Top Qs
Timeline
Chat
Perspective
Erdelyi–Kober operator
From Wikipedia, the free encyclopedia
Remove ads
Remove ads
In mathematics, an Erdélyi–Kober operator is a fractional integration operation introduced by Arthur Erdélyi (1940) and Hermann Kober (1940).
The Erdélyi–Kober fractional integral is given by
which generalizes the Riemann fractional integral and the Weyl integral.
Remove ads
References
- Erdélyi, A. (1940), "On fractional integration and its application to the theory of Hankel transforms", The Quarterly Journal of Mathematics, Second Series, 11: 293–303, doi:10.1093/qmath/os-11.1.293, ISSN 0033-5606, MR 0003271
- Erdélyi, Arthur (1950–51), "On some functional transformations", Rendiconti del Seminario Matematico dell'Università e del Politecnico di Torino, 10: 217–234, MR 0047818
- Erdélyi, A.; Kober, H. (1940), "Some remarks on Hankel transforms", The Quarterly Journal of Mathematics, Second Series, 11: 212–221, doi:10.1093/qmath/os-11.1.212, ISSN 0033-5606, MR 0003270
- Kober, Hermann (1940), "On fractional integrals and derivatives", The Quarterly Journal of Mathematics (Oxford Series), 11 (1): 193–211, doi:10.1093/qmath/os-11.1.193
- Sneddon, Ian Naismith (1975), "The use in mathematical physics of Erdélyi-Kober operators and of some of their generalizations", in Ross, Bertram (ed.), Fractional calculus and its applications (Proc. Internat. Conf., Univ. New Haven, West Haven, Conn., 1974), Lecture Notes in Math., vol. 457, Berlin, New York: Springer-Verlag, pp. 37–79, doi:10.1007/BFb0067097, ISBN 978-3-540-07161-7, MR 0487301
Remove ads
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads