Existential generalization

Rule of inference in predicate logic From Wikipedia, the free encyclopedia

In predicate logic, existential generalization[1][2] (also known as existential introduction, ∃I) is a valid rule of inference that allows one to move from a specific statement, or one instance, to a quantified generalized statement, or existential proposition. In first-order logic, it is often used as a rule for the existential quantifier () in formal proofs.

Quick Facts Type, Field ...
Existential generalization
TypeRule of inference
FieldPredicate logic
StatementThere exists a member in a universal set with a property of
Symbolic statement
Close

Example: "Rover loves to wag his tail. Therefore, something loves to wag its tail."

Example: "Alice made herself a cup of tea. Therefore, Alice made someone a cup of tea."

Example: "Alice made herself a cup of tea. Therefore, someone made someone a cup of tea."

In the Fitch-style calculus:

where is obtained from by replacing all its free occurrences of (or some of them) by .[3]

Quine

According to Willard Van Orman Quine, universal instantiation and existential generalization are two aspects of a single principle, for instead of saying that implies , we could as well say that the denial implies . The principle embodied in these two operations is the link between quantifications and the singular statements that are related to them as instances. Yet it is a principle only by courtesy. It holds only in the case where a term names and, furthermore, occurs referentially.[4]

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.