Top Qs
Timeline
Chat
Perspective
Feller's coin-tossing constants
Mathematical constants From Wikipedia, the free encyclopedia
Remove ads
Remove ads
Feller's coin-tossing constants are a set of numerical constants which describe asymptotic probabilities that in n independent tosses of a fair coin, no run of k consecutive heads (or, equally, tails) appears.
William Feller showed[1] that if this probability is written as p(n,k) then
where αk is the smallest positive real root of
and
Remove ads
Values of the constants
For the constants are related to the golden ratio, , and Fibonacci numbers; the constants are and . The exact probability p(n,2) can be calculated either by using Fibonacci numbers, p(n,2) = or by solving a direct recurrence relation leading to the same result. For higher values of , the constants are related to generalizations of Fibonacci numbers such as the tribonacci and tetranacci numbers. The corresponding exact probabilities can be calculated as p(n,k) = . [2]
Remove ads
Example
If we toss a fair coin ten times then the exact probability that no pair of heads come up in succession (i.e. n = 10 and k = 2) is p(10,2) = = 0.140625. The approximation gives 1.44721356...×1.23606797...−11 = 0.1406263...
Remove ads
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads