First Hardy–Littlewood conjecture
Unanswered conjecture in number theory From Wikipedia, the free encyclopedia
In number theory, the first Hardy–Littlewood conjecture[1] states the asymptotic formula for the number of prime k-tuples less than a given magnitude by generalizing the prime number theorem. It was first proposed by G. H. Hardy and John Edensor Littlewood in 1923.[2]
![]() Plot showing the number of twin primes less than a given n. The first Hardy–Littlewood conjecture predicts there are infinitely many of these. | |
Field | Number theory |
---|---|
Conjectured by | G. H. Hardy John Edensor Littlewood |
Conjectured in | 1923 |
Open problem | yes |
Statement
Summarize
Perspective
Let be positive even integers such that the numbers of the sequence do not form a complete residue class with respect to any prime and let denote the number of primes less than st. are all prime. Then[1][3]
where
is a product over odd primes and denotes the number of distinct residues of modulo .
The case and is related to the twin prime conjecture. Specifically if denotes the number of twin primes less than n then
where
is the twin prime constant.[3]
Skewes' number
The Skewes' numbers for prime k-tuples are an extension of the definition of Skewes' number to prime k-tuples based on the first Hardy–Littlewood conjecture. The first prime p that violates the Hardy–Littlewood inequality for the k-tuple P, i.e., such that
(if such a prime exists) is the Skewes number for P.[3]
Consequences
The conjecture has been shown to be inconsistent with the second Hardy–Littlewood conjecture.[4]
Generalizations
The Bateman–Horn conjecture generalizes the first Hardy–Littlewood conjecture to polynomials of degree higher than 1.[1]
Notes
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.