A simple Markov network for demonstrating that any Gibbs random field satisfies every Markov property.
It is a trivial matter to show that a Gibbs random field satisfies every Markov property. As an example of this fact, see the following:
In the image to the right, a Gibbs random field over the provided graph has the form . If variables and are fixed, then the global Markov property requires that: (see conditional independence), since forms a barrier between and .
With and constant, where and . This implies that .
To establish that every positive probability distribution that satisfies the local Markov property is also a Gibbs random field, the following lemma, which provides a means for combining different factorizations, needs to be proved:
Lemma 1 provides a means for combining factorizations as shown in this diagram. Note that in this image, the overlap between sets is ignored.
Lemma 1
Let denote the set of all random variables under consideration, and let and denote arbitrary sets of variables. (Here, given an arbitrary set of variables , will also denote an arbitrary assignment to the variables from .)
If
for functions and , then there exist functions and such that
In other words, provides a template for further factorization of .
More information In order to use ...
Proof of Lemma 1
In order to use as a template to further factorize , all variables outside of need to be fixed. To this end, let be an arbitrary fixed assignment to the variables from (the variables not in ). For an arbitrary set of variables , let denote the assignment restricted to the variables from (the variables from , excluding the variables from ).
Moreover, to factorize only , the other factors need to be rendered moot for the variables from . To do this, the factorization
will be re-expressed as
For each : is where all variables outside of have been fixed to the values prescribed by .
Let
and
for each so
What is most important is that when the values assigned to do not conflict with the values prescribed by , making "disappear" when all variables not in are fixed to the values from .
Fixing all variables not in to the values from gives
Since ,
Letting
gives:
which finally gives:
Close
The clique formed by vertices , , and , is the intersection of , , and .
Lemma 1 provides a means of combining two different factorizations of . The local Markov property implies that for any random variable , that there exists factors and such that:
where are the neighbors of node . Applying Lemma 1 repeatedly eventually factors into a product of clique potentials (see the image on the right).