Top Qs
Timeline
Chat
Perspective
Gabriel's theorem
Classifies quivers (multigraphs) of finite type in terms of Dynkin diagrams. From Wikipedia, the free encyclopedia
Remove ads
In mathematics, Gabriel's theorem, proved by Pierre Gabriel, classifies the quivers of finite type in terms of Dynkin diagrams.
Statement
Summarize
Perspective
A quiver is of finite type if it has only finitely many isomorphism classes of indecomposable representations. Gabriel (1972) classified all quivers of finite type, and also their indecomposable representations. More precisely, Gabriel's theorem states that:
- A (connected) quiver is of finite type if and only if its underlying graph (when the directions of the arrows are ignored) is one of the ADE Dynkin diagrams: , , , , .
- The indecomposable representations are in a one-to-one correspondence with the positive roots of the root system of the Dynkin diagram.
Dlab & Ringel (1973) found a generalization of Gabriel's theorem in which all Dynkin diagrams of finite-dimensional semisimple Lie algebras occur. Victor Kac extended these results to all quivers, not only of Dynkin type, relating their indecomposable representations to the roots of Kac–Moody algebras.
Remove ads
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads