Top Qs
Timeline
Chat
Perspective

Gauss's inequality

From Wikipedia, the free encyclopedia

Remove ads

In probability theory, Gauss's inequality (or the Gauss inequality) gives an upper bound on the probability that a unimodal random variable lies more than any given distance from its mode.

Let X be a unimodal random variable with mode m, and let τ 2 be the expected value of (X  m)2. (τ 2 can also be expressed as (μ  m)2 + σ 2, where μ and σ are the mean and standard deviation of X.) Then for any positive value of k,

The theorem was first proved by Carl Friedrich Gauss in 1823.

Remove ads

Extensions to higher-order moments

Summarize
Perspective

Winkler in 1866 extended Gauss's inequality to rth moments [1] where r > 0 and the distribution is unimodal with a mode of zero. This is sometimes called Camp–Meidell's inequality.[2][3]

Gauss's bound has been subsequently sharpened and extended to apply to departures from the mean rather than the mode due to the Vysochanskiï–Petunin inequality. The latter has been extended by Dharmadhikari and Joag-Dev[4]

where s is a constant satisfying both s > r + 1 and s(s  r  1) = rr and r > 0.

It can be shown that these inequalities are the best possible and that further sharpening of the bounds requires that additional restrictions be placed on the distributions.

Remove ads

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads