Top Qs
Timeline
Chat
Perspective

Geroch's splitting theorem

From Wikipedia, the free encyclopedia

Remove ads

In the theory of causal structure on Lorentzian manifolds, Geroch's theorem or Geroch's splitting theorem (first proved by Robert Geroch) gives a topological characterization of globally hyperbolic spacetimes.

The theorem

Summarize
Perspective

A Cauchy surface can possess corners, and thereby need not be a differentiable submanifold of the spacetime; it is however always continuous (and even Lipschitz continuous). By using the flow of a vector field chosen to be complete, smooth, and timelike, it is elementary to prove that if a Cauchy surface S is Ck-smooth then the spacetime is Ck-diffeomorphic to the product S × R, and that any two such Cauchy surfaces are Ck-diffeomorphic.[1]

Robert Geroch proved in 1970 that every globally hyperbolic spacetime has a Cauchy surface S, and that the homeomorphism (as a C0-diffeomorphism) to S × R can be selected so that every surface of the form S × {a} is a Cauchy surface and each curve of the form {s} × R is a continuous timelike curve.[2]

Various foundational textbooks, such as George Ellis and Stephen Hawking's The Large Scale Structure of Space-Time and Robert Wald's General Relativity,[3] asserted that smoothing techniques allow Geroch's result to be strengthened from a topological to a smooth context. However, this was not satisfactorily proved until work of Antonio Bernal and Miguel Sánchez in 2003. As a result of their work, it is known that every globally hyperbolic spacetime has a Cauchy surface which is smoothly embedded and spacelike.[4] As they proved in 2005, the diffeomorphism to S × R can be selected so that each surface of the form S × {a} is a spacelike smooth Cauchy surface and that each curve of the form {s} × R is a smooth timelike curve orthogonal to each surface S × {a}.[5]

Remove ads

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads