Top Qs
Timeline
Chat
Perspective
Hadamard's gamma function
Extension of the factorial function From Wikipedia, the free encyclopedia
Remove ads
Remove ads
In mathematics, Hadamard's gamma function, named after Jacques Hadamard, is an extension of the factorial function, different from the classical gamma function (it is an instance of a pseudogamma function). This function, with its argument shifted down by 1, interpolates the factorial and extends it to real and complex numbers in a different way from Euler's gamma function. It is defined as:

where Γ(x) denotes the classical gamma function. If n is a positive integer, then:
Remove ads
Properties
Unlike the classical gamma function, Hadamard's gamma function H(x) is an entire function, i.e., it is defined and analytic at all complex numbers. It satisfies the functional equation
with the understanding that is taken to be 0 for positive integer values of x.
Remove ads
Representations
Summarize
Perspective
Hadamard's gamma can also be expressed as
and also as
where ψ(x) denotes the digamma function, and denotes the Lerch zeta function.
Remove ads
See also
References
- Hadamard, M. J. (1894), Sur L'Expression Du Produit 1·2·3· · · · ·(n−1) Par Une Fonction Entière (PDF) (in French), Œuvres de Jacques Hadamard, Centre National de la Recherche Scientifiques, Paris, 1968
- Srivastava, H. M.; Junesang, Choi (2012). Zeta and Q-Zeta Functions and Associated Series and Integrals. Elsevier insights. p. 124. ISBN 978-0-12-385218-2.
- "Introduction to the Gamma Function". The Wolfram Functions Site. Wolfram Research, Inc. Retrieved 27 February 2016.
Remove ads
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads