Top Qs
Timeline
Chat
Perspective
Higman–Sims asymptotic formula
Asymptotic estimate in group theory From Wikipedia, the free encyclopedia
Remove ads
In finite group theory, the Higman–Sims asymptotic formula gives an asymptotic estimate on number of groups of prime power order.
Statement
Let be a (fixed) prime number. Define as the number of isomorphism classes of groups of order . Then:
Here, the big-O notation is with respect to , not with respect to (the constant under the big-O notation may depend on ).
Remove ads
References
- Kantor, William M. (1990). "Some topics in asymptotic group theory". Groups, Combinatorics and Geometry. Durham. pp. 403–421.
- Higman, Graham (1960). "Enumerating p-Groups. I: Inequalities". Proceedings of the London Mathematical Society. 3 (1): 24–30. doi:10.1112/plms/s3-10.1.24.
- Sims, Charles C. (1965). "Enumerating p-Groups". Proceedings of the London Mathematical Society. 3 (1): 151–166. doi:10.1112/plms/s3-15.1.151.
Remove ads
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads