Top Qs
Timeline
Chat
Perspective

Hilbert's lemma

From Wikipedia, the free encyclopedia

Remove ads

Hilbert's lemma was proposed at the end of the 19th century by mathematician David Hilbert. The lemma describes a property of the principal curvatures of surfaces. It may be used to prove Liebmann's theorem that a compact surface with constant Gaussian curvature must be a sphere.[1]

Statement of the lemma

Given a manifold in three dimensions that is smooth and differentiable over a patch containing the point p, where k and m are defined as the principal curvatures and K(x) is the Gaussian curvature at a point x, if k has a max at p, m has a min at p, and k is strictly greater than m at p, then K(p) is a non-positive real number.[2]

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads