Top Qs
Timeline
Chat
Perspective
Homography (computer vision)
Relation of two images with software From Wikipedia, the free encyclopedia
Remove ads
Remove ads
In the field of computer vision, any two images of the same planar surface in space are related by a homography (assuming a pinhole camera model). This has many practical applications, such as image rectification, image registration, or camera motion—rotation and translation—between two images. Once camera resectioning has been done from an estimated homography matrix, this information may be used for navigation, or to insert models of 3D objects into an image or video, so that they are rendered with the correct perspective and appear to have been part of the original scene (see Augmented reality).

Remove ads
3D plane to plane equation
Summarize
Perspective
We have two cameras a and b, looking at points in a plane. Passing from the projection of in b to the projection of in a:
where and are the z coordinates of P in each camera frame and where the homography matrix is given by
- .
is the rotation matrix by which b is rotated in relation to a; t is the translation vector from a to b; n and d are the normal vector of the plane and the distance from origin to the plane respectively. Ka and Kb are the cameras' intrinsic parameter matrices.
The figure shows camera b looking at the plane at distance d. Note: From above figure, assuming as plane model, is the projection of vector along , and equal to . So . And we have where .
This formula is only valid if camera b has no rotation and no translation. In the general case where and are the respective rotations and translations of camera a and b, and the homography matrix becomes
where d is the distance of the camera b to the plane.
Remove ads
Affine homography
When the image region in which the homography is computed is small or the image has been acquired with a large focal length, an affine homography is a more appropriate model of image displacements. An affine homography is a special type of a general homography whose last row is fixed to
Remove ads
See also
References
Toolboxes
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads