Top Qs
Timeline
Chat
Perspective
Homological integration
Mathematics concept From Wikipedia, the free encyclopedia
Remove ads
Remove ads
In the mathematical fields of differential geometry and geometric measure theory, homological integration or geometric integration is a method for extending the notion of the integral to manifolds. Rather than functions or differential forms, the integral is defined over currents on a manifold.
The theory is "homological" because currents themselves are defined by duality with differential forms. To wit, the space Dk of k-currents on a manifold M is defined as the dual space, in the sense of distributions, of the space of k-forms Ωk on M. Thus there is a pairing between k-currents T and k-forms α, denoted here by
Under this duality pairing, the exterior derivative
goes over to a boundary operator
defined by
for all α ∈ Ωk. This is a homological rather than cohomological construction.
Remove ads
References
- Federer, Herbert (1969), Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, vol. 153, New York: Springer-Verlag New York Inc., pp. xiv+676, ISBN 978-3-540-60656-7, MR 0257325, Zbl 0176.00801.
- Whitney, H. (1957), Geometric Integration Theory, Princeton Mathematical Series, vol. 21, Princeton, NJ and London: Princeton University Press and Oxford University Press, pp. XV+387, MR 0087148, Zbl 0083.28204.
Remove ads
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads