Top Qs
Timeline
Chat
Perspective

Küssner effect

Unsteady aerodynamic forces on an airfoil or hydrofoil caused by encountering a transverse gust From Wikipedia, the free encyclopedia

Küssner effect
Remove ads
Remove ads

In fluid dynamics, the Küssner effect describes the unsteady aerodynamic forces on an airfoil or hydrofoil caused by encountering a transverse gust. This is directly related to the Küssner function, used in describing the effect. Both the effect and function are named after Hans Georg Küssner (1900–1984), a German aerodynamics engineer.[1]

Thumb
An airfoil flying into a gust region. The airfoil speed is denoted with V and is constant, the lift force on the airfoil is given by L, and its pitching moment by M. The gust has a transverse (vertical) velocity w, which is assumed to be a constant in the gust region, left of the dashed line.

Küssner derived an approximate model for an airfoil encountering a sudden step-like change in the transverse gust velocity; or, equivalently, as seen from a frame of reference moving with the airfoil: a sudden change in the angle of attack. The airfoil is modelled as a flat plate in a potential flow, moving with constant horizontal velocity.[2] For this case he derived the impulse response function (known as Küssner function[3]) needed to compute the unsteady lift and moment exerted by the air on the airfoil.

Remove ads

Notes

Loading content...

References

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads