Top Qs
Timeline
Chat
Perspective
Kadomtsev–Petviashvili equation
From Wikipedia, the free encyclopedia
Remove ads
In mathematics and physics, the Kadomtsev–Petviashvili equation (often abbreviated as KP equation) is a partial differential equation to describe nonlinear wave motion. Named after Boris Borisovich Kadomtsev and Vladimir Iosifovich Petviashvili, the KP equation is usually written as where . The above form shows that the KP equation is a generalization to two spatial dimensions, x and y, of the one-dimensional Korteweg–de Vries (KdV) equation. To be physically meaningful, the wave propagation direction has to be not-too-far from the x direction, i.e. with only slow variations of solutions in the y direction.
Like the KdV equation, the KP equation is completely integrable.[1][2][3][4][5] It can also be solved using the inverse scattering transform much like the nonlinear Schrödinger equation.[6]
In 2002, the regularized version of the KP equation, naturally referred to as the Benjamin–Bona–Mahony–Kadomtsev–Petviashvili equation (or simply the BBM-KP equation), was introduced as an alternative model for small amplitude long waves in shallow water moving mainly in the x direction in 2+1 space.[7]
where . The BBM-KP equation provides an alternative to the usual KP equation, in a similar way that the Benjamin–Bona–Mahony equation is related to the classical Korteweg–de Vries equation, as the linearized dispersion relation of the BBM-KP is a good approximation to that of the KP but does not exhibit the unwanted limiting behavior as the Fourier variable dual to x approaches . The BBM-KP equation can be viewed as a weak transverse perturbation of the Benjamin–Bona–Mahony equation. As a result, the solutions of their corresponding Cauchy problems share an intriguing and complex mathematical relationship. Aguilar et al. proved that the solution of the Cauchy problem for the BBM-KP model equation converges to the solution of the Cauchy problem associated to the Benjamin–Bona–Mahony equation in the -based Sobolev space for all , provided their corresponding initial data are close in as the transverse variable .[8]
Remove ads
History

The KP equation was first written in 1970 by Soviet physicists Boris B. Kadomtsev (1928–1998) and Vladimir I. Petviashvili (1936–1993); it came as a natural generalization of the KdV equation (derived by Korteweg and De Vries in 1895). Whereas in the KdV equation waves are strictly one-dimensional, in the KP equation this restriction is relaxed. Still, both in the KdV and the KP equation, waves have to travel in the positive x-direction.
Remove ads
Connections to physics
The KP equation can be used to model water waves of long wavelength with weakly non-linear restoring forces and frequency dispersion. If surface tension is weak compared to gravitational forces, is used; if surface tension is strong, then . Because of the asymmetry in the way x- and y-terms enter the equation, the waves described by the KP equation behave differently in the direction of propagation (x-direction) and transverse (y) direction; oscillations in the y-direction tend to be smoother (be of small-deviation).
The KP equation can also be used to model waves in ferromagnetic media,[9] as well as two-dimensional matter–wave pulses in Bose–Einstein condensates.
Remove ads
Limiting behavior
For , typical x-dependent oscillations have a wavelength of giving a singular limiting regime as . The limit is called the dispersionless limit.[10][11][12]
If we also assume that the solutions are independent of y as , then they also satisfy the inviscid Burgers' equation:
Suppose the amplitude of oscillations of a solution is asymptotically small — — in the dispersionless limit. Then the amplitude satisfies a mean-field equation of Davey–Stewartson type.
See also
References
Further reading
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads