Kakutani's theorem (measure theory)
From Wikipedia, the free encyclopedia
In measure theory, a branch of mathematics, Kakutani's theorem is a fundamental result on the equivalence or mutual singularity of countable product measures. It gives an "if and only if" characterisation of when two such measures are equivalent, and hence it is extremely useful when trying to establish change-of-measure formulae for measures on function spaces. The result is due to the Japanese mathematician Shizuo Kakutani. Kakutani's theorem can be used, for example, to determine whether a translate of a Gaussian measure is equivalent to (only when the translation vector lies in the Cameron–Martin space of ), or whether a dilation of is equivalent to (only when the absolute value of the dilation factor is 1, which is part of the Feldman–Hájek theorem).
![]() | This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. (May 2024) |
Statement of the theorem
Summarize
Perspective
For each , let and be measures on the real line , and let and be the corresponding product measures on . Suppose also that, for each , and are equivalent (i.e. have the same null sets). Then either and are equivalent, or else they are mutually singular. Furthermore, equivalence holds precisely when the infinite product
has a nonzero limit; or, equivalently, when the infinite series
converges.
References
- Bogachev, Vladimir (1998). Gaussian Measures. Mathematical Surveys and Monographs. Vol. 62. Providence, RI: American Mathematical Society. doi:10.1090/surv/062. ISBN 0-8218-1054-5. (See Theorem 2.12.7)
- Kakutani, Shizuo (1948). "On equivalence of infinite product measures". Ann. Math. 49: 214–224. doi:10.2307/1969123.
Wikiwand - on
Seamless Wikipedia browsing. On steroids.