In those coordinates the local clocks and rulers are at constant
and have no local orbital angular momentum
, therefore they are corotating with the frame-dragging velocity relative to the fixed stars. In (+, −, −, −) signature and in natural units of
the KNdS metric is[3][4][5][6]
![{\displaystyle g_{\rm {tt}}={\rm {-{\frac {3\ [a^{2}\ \sin ^{2}\theta \left(a^{2}\ \Lambda \ \cos ^{2}\theta +3\right)+a^{2}\left(\Lambda \ r^{2}-3\right)+\Lambda \ r^{4}-3\ r^{2}+6\ r-3\mho ^{2}]}{\left(a^{2}\ \Lambda +3\right)^{2}\left(a^{2}\cos ^{2}\theta +r^{2}\right)}}}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/f2b5b59138ef22eecb2c6c151fd5c5d8ebbd28de)


![{\displaystyle g_{\rm {\phi \phi }}={\rm {\frac {9\ \{{\frac {1}{3}}\left(a^{2}+r^{2}\right)^{2}\sin ^{2}\theta \left(a^{2}\ \Lambda \cos ^{2}\theta +3\right)-a^{2}\sin ^{4}\theta \ [\left(a^{2}+r^{2}\right)\left(1-\Lambda \ r^{2}/3\right)-2\ r+\mho ^{2}]\}}{-\left(a^{2}\ \Lambda +3\right)^{2}\left(a^{2}\cos ^{2}\theta +r^{2}\right)}}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/07ebc2bba7c71aa235ff94d29110470feb661727)
![{\displaystyle g_{\rm {t\phi }}={\rm {\frac {3\ a\ \sin ^{2}\theta \ [a^{2}\ \Lambda \left(a^{2}+r^{2}\right)\cos ^{2}\theta +a^{2}\ \Lambda \ r^{2}+\Lambda \ r^{4}+6\ r-3\ \mho ^{2}]}{\left(a^{2}\ \Lambda +3\right)^{2}\left(a^{2}\ \cos ^{2}\theta +r^{2}\right)}}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/92a804c925442fcf46553ca63a60b8b0a57f75d0)
with all the other metric tensor components
, where
is the black hole's spin parameter,
its electric charge, and
[7] the cosmological constant with
as the time-independent Hubble parameter. The electromagnetic 4-potential is

The frame-dragging angular velocity is
![{\displaystyle \omega ={\frac {\rm {d\phi }}{\rm {dt}}}=-{\frac {g_{\rm {t\phi }}}{g_{\rm {\phi \phi }}}}={\rm {\frac {a\ [a^{2}\ \Lambda \left(a^{2}+r^{2}\right)\cos ^{2}\theta +a^{2}\ \Lambda \ r^{2}+6\ r+\Lambda \ r^{4}-3\ \mho ^{2}]}{a^{2}\ \sin ^{2}\theta \ [a^{2}\left(\Lambda \ r^{2}-3\right)+6\ r+\Lambda \ r^{4}-3\ r^{2}-3\ \mho ^{2}]+a^{2}\ \Lambda \ \left(a^{2}+r^{2}\right)^{2}\cos ^{2}\theta +3\ \left(a^{2}+r^{2}\right)^{2}}}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/dda8e28849c12cda4142724ba3596931fa5020ad)
and the local frame-dragging velocity relative to constant
positions (the speed of light at the ergosphere)
![{\displaystyle \nu ={\sqrt {g_{\rm {t\phi }}\ g^{\rm {t\phi }}}}={\rm {\sqrt {-{\frac {a^{2}\ \sin ^{2}\theta \ [a^{2}\ \Lambda \left(a^{2}+r^{2}\right)\cos ^{2}\theta +a^{2}\Lambda \ r^{2}+6\ r+\Lambda \ r^{4}-3\ \mho ^{2}]^{2}}{\left(a^{2}\ \Lambda \ \cos ^{2}\theta +3\right)\left(a^{2}+r^{2}-a^{2}\sin ^{2}\theta \right)^{2}[a^{2}\left(\Lambda \ r^{2}-3\right)+6\ r+\Lambda \ r^{4}-3\ r^{2}-3\ \mho ^{2}]}}}}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/4081e3f031366394e1b09362e3ee4f8c725527b8)
The escape velocity (the speed of light at the horizons) relative to the local corotating zero-angular momentum observer is
![{\displaystyle {\rm {v}}={\sqrt {1-1/g^{\rm {tt}}}}={\rm {\sqrt {{\frac {3\left(a^{2}\Lambda \cos ^{2}\theta +3\right)\left(a^{2}+r^{2}-a^{2}\sin ^{2}\theta \right)^{2}\left[a^{2}\left(\Lambda r^{2}-3\right)+\Lambda r^{4}-3r^{2}+6r-3\mho ^{2}\right]}{\left(a^{2}\Lambda +3\right)^{2}\left(a^{2}\cos ^{2}\theta +r^{2}\right)\{a^{2}\Lambda \left(a^{2}+r^{2}\right)^{2}\cos ^{2}\theta +3\left(a^{2}+r^{2}\right)^{2}+a^{2}\sin ^{2}\theta \left[a^{2}\left(\Lambda r^{2}-3\right)+\Lambda r^{4}-3r^{2}+6r-3\mho ^{2}\right]\}}}+1}}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/9147e151af87916136f383850ec6704aead3b6a9)
The conserved quantities in the equations of motion

where
is the four velocity,
is the test particle's specific charge and
the Maxwell–Faraday tensor

are the total energy

and the covariant axial angular momentum

The overdot stands for differentiation by the testparticle's proper time
or the photon's affine parameter, so
.