Top Qs
Timeline
Chat
Perspective
Killed process
Stochastic process that is forced to assume an undefined or "killed" state at some time From Wikipedia, the free encyclopedia
Remove ads
In probability theory — specifically, in stochastic analysis — a killed process is a stochastic process that is forced to assume an undefined or "killed" state at some (possibly random) time.
![]() | This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. (July 2024) |
This article relies largely or entirely on a single source. (July 2024) |
Remove ads
Definition
Let X : T × Ω → S be a stochastic process defined for "times" t in some ordered index set T, on a probability space (Ω, Σ, P), and taking values in a measurable space S. Let ζ : Ω → T be a random time, referred to as the killing time. Then the killed process Y associated to X is defined by
and Yt is left undefined for t ≥ ζ. Alternatively, one may set Yt = c for t ≥ ζ, where c is a "coffin state" not in S.
Remove ads
See also
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads