Top Qs
Timeline
Chat
Perspective
Kunita–Watanabe inequality
From Wikipedia, the free encyclopedia
Remove ads
In stochastic calculus, the Kunita–Watanabe inequality is a generalization of the Cauchy–Schwarz inequality to integrals of stochastic processes. It was first obtained by Hiroshi Kunita and Shinzo Watanabe and plays a fundamental role in their extension of Ito's stochastic integral to square-integrable martingales.[1]
Statement of the theorem
Summarize
Perspective
Let M, N be continuous local martingales and H, K measurable processes. Then
where the angled brackets indicates the quadratic variation and quadratic covariation operators. The integrals are understood in the Lebesgue–Stieltjes sense.
Remove ads
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads