Top Qs
Timeline
Chat
Perspective
Lüroth's theorem
From Wikipedia, the free encyclopedia
Remove ads
In mathematics, Lüroth's theorem asserts that every field that lies between a field K and the rational function field K(X) must be generated as an extension of K by a single element of K(X). This result is named after Jacob Lüroth, who proved it in 1876.[1]
Statement
Let be a field and be an intermediate field between and , for some indeterminate X. Then there exists a rational function such that . In other words, every intermediate extension between and is a simple extension.
Remove ads
Proofs
The proof of Lüroth's theorem can be derived easily from the theory of rational curves, using the geometric genus.[2] This method is non-elementary, but several short proofs using only the basics of field theory have long been known, mainly using the concept of transcendence degree.[3] Many of these simple proofs use Gauss's lemma on primitive polynomials as a main step.[4]
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads