Top Qs
Timeline
Chat
Perspective
Laguerre polynomials
Sequence of differential equation solutions From Wikipedia, the free encyclopedia
Remove ads
In mathematics, the Laguerre polynomials, named after Edmond Laguerre (1834–1886), are nontrivial solutions of Laguerre's differential equation: which is a second-order linear differential equation. This equation has nonsingular solutions only if n is a non-negative integer.

Sometimes the name Laguerre polynomials is used for solutions of where n is still a non-negative integer. Then they are also named generalized Laguerre polynomials, as will be done here (alternatively associated Laguerre polynomials or, rarely, Sonine polynomials, after their inventor[1] Nikolay Yakovlevich Sonin).
More generally, a Laguerre function is a solution when n is not necessarily a non-negative integer.
The Laguerre polynomials are also used for Gauss–Laguerre quadrature to numerically compute integrals of the form
These polynomials, usually denoted L0, L1, ..., are a polynomial sequence which may be defined by the Rodrigues formula,
reducing to the closed form of a following section.
They are orthogonal polynomials with respect to an inner product
The rook polynomials in combinatorics are more or less the same as Laguerre polynomials, up to elementary changes of variables. Further see the Tricomi–Carlitz polynomials.
The Laguerre polynomials arise in quantum mechanics, in the radial part of the solution of the Schrödinger equation for a one-electron atom. They also describe the static Wigner functions of oscillator systems in quantum mechanics in phase space. They further enter in the quantum mechanics of the Morse potential and of the 3D isotropic harmonic oscillator.
Physicists sometimes use a definition for the Laguerre polynomials that is larger by a factor of n! than the definition used here. (Likewise, some physicists may use somewhat different definitions of the so-called associated Laguerre polynomials.)
Remove ads
Recursive definition, closed form, and generating function
One can also define the Laguerre polynomials recursively, defining the first two polynomials as and then using the following recurrence relation for any k ≥ 1: Furthermore,
In solution of some boundary value problems, the characteristic values can be useful:
The closed form is
The generating function for them likewise follows, The operator form is
Polynomials of negative index can be expressed using the ones with positive index:

Remove ads
Generalized Laguerre polynomials
Summarize
Perspective
For arbitrary real α the polynomial solutions of the differential equation[2] are called generalized Laguerre polynomials, or associated Laguerre polynomials.
One can also define the generalized Laguerre polynomials recursively, defining the first two polynomials as
and then using the following recurrence relation for any k ≥ 1:
The simple Laguerre polynomials are the special case α = 0 of the generalized Laguerre polynomials:
The Rodrigues formula for them is
The generating function for them is

Properties
- Laguerre functions are defined by confluent hypergeometric functions and Kummer's transformation as[3] where is a generalized binomial coefficient. When n is an integer the function reduces to a polynomial of degree n. It has the alternative expression[4] in terms of Kummer's function of the second kind.
- The closed form for these generalized Laguerre polynomials of degree n is[5] derived by applying Leibniz's theorem for differentiation of a product to Rodrigues' formula.
- Laguerre polynomials have a differential operator representation, much like the closely related Hermite polynomials. Namely, let and consider the differential operator . Then .[citation needed]
- The first few generalized Laguerre polynomials are:
- The coefficient of the leading term is (−1)n/n!;
- The constant term, which is the value at 0, is
- The discriminant is[6]
As a contour integral
Given the generating function specified above, the polynomials may be expressed in terms of a contour integral where the contour circles the origin once in a counterclockwise direction without enclosing the essential singularity at 1
Recurrence relations
The addition formula for Laguerre polynomials:[7] Laguerre's polynomials satisfy the recurrence relations in particular and or moreover
They can be used to derive the four 3-point-rules
combined they give this additional, useful recurrence relations
Since is a monic polynomial of degree in , there is the partial fraction decomposition The second equality follows by the following identity, valid for integer i and n and immediate from the expression of in terms of Charlier polynomials: For the third equality apply the fourth and fifth identities of this section.
Derivatives
Differentiating the power series representation of a generalized Laguerre polynomial k times leads to
This points to a special case (α = 0) of the formula above: for integer α = k the generalized polynomial may be written the shift by k sometimes causing confusion with the usual parenthesis notation for a derivative.
Moreover, the following equation holds: which generalizes with Cauchy's formula to
The derivative with respect to the second variable α has the form,[8] The generalized Laguerre polynomials obey the differential equation which may be compared with the equation obeyed by the kth derivative of the ordinary Laguerre polynomial,
where for this equation only.
In Sturm–Liouville form the differential equation is
which shows that L(α)
n is an eigenvector for the eigenvalue n.
Orthogonality
The generalized Laguerre polynomials are orthogonal over [0, ∞) with respect to the measure with weighting function xα e−x:[9]
which follows from
If denotes the gamma distribution then the orthogonality relation can be written as
The associated, symmetric kernel polynomial has the representations (Christoffel–Darboux formula)[citation needed]
recursively
Moreover,[clarification needed Limit as n goes to infinity?]
Turán's inequalities can be derived here, which is
The following integral is needed in the quantum mechanical treatment of the hydrogen atom,
Series expansions
Let a function have the (formal) series expansion
Then
The series converges in the associated Hilbert space L2[0, ∞) if and only if
Further examples of expansions
Monomials are represented as while binomials have the parametrization
This leads directly to for the exponential function. The incomplete gamma function has the representation
Asymptotics
In terms of elementary functions
For any fixed positive integer , fixed real number , fixed and bounded interval , uniformly for , at :where and are functions depending on but not , and regular for . The first few ones are:This is Perron's formula.[10][11]: 78 There is also a generalization for .[12] Fejér's formula is a special case of Perron's formula with .[13][12][14]
In terms of Bessel functions
The Mehler–Heine formula states:
where is a Bessel function of the first kind.
See also: [10].
In terms of Airy functions
Let . Let be the Airy function. Let be arbitrary and real, and be positive and fixed.
The Plancherel–Rotach asymptotics formulas:[15][10]
- for and
- for and
- for and complex and bounded
See also: [10].
Remove ads
Zeroes
Summarize
Perspective
Notation
is the -th positive zero of the Bessel function .
is the -th zero of the Airy function , in descending order: .
.
If , then has real roots. Thus in this section we assume by default.
are the real roots of .
Note that is a Sturm chain.
Inequalities
For , we have these bounds:[16][17][6][18]
- when
For fixed ,[16][6][17]For fixed , we have , so the first inequality is sharp.
See also [19].
Electrostatics
The zeroes satisfy the Stieltjes relations:[20][21]The first relation can be interpreted physically. Fix an electric particle at origin with charge , and produce a constant electric field of strength . Then, place electric particles with charge . The first relation states that the zeroes of are the equilibrium positions of the particles.
As the zeroes specify the polynomial up to scaling, this provides an alternative way to uniquely characterize the Laguerre polynomials.
The zeroes also satisfy[22]which allows the following bound
Limit distribution
Let be the cumulative distribution function for the roots, then we have the limit law[23]which can be interpreted as the limit distribution of the Wishart ensemble spectrum.
For fixed and fixed , as ,[17]
For ,[22]
Remove ads
In quantum mechanics
In quantum mechanics the Schrödinger equation for the hydrogen-like atom is exactly solvable by separation of variables in spherical coordinates. The radial part of the wave function is a (generalized) Laguerre polynomial.[24]
Vibronic transitions in the Franck-Condon approximation can also be described using Laguerre polynomials.[25]
Multiplication theorems
Summarize
Perspective
Erdélyi gives the following two multiplication theorems [26]
Remove ads
Relation to Hermite polynomials
Summarize
Perspective
The generalized Laguerre polynomials are related to the Hermite polynomials: where the Hn(x) are the Hermite polynomials based on the weighting function exp(−x2), the so-called "physicist's version."
Because of this, the generalized Laguerre polynomials arise in the treatment of the quantum harmonic oscillator.
Applying the addition formula,
Remove ads
Relation to hypergeometric functions
The Laguerre polynomials may be defined in terms of hypergeometric functions, specifically the confluent hypergeometric functions, as where is the Pochhammer symbol (which in this case represents the rising factorial).
Remove ads
Hardy–Hille formula
The generalized Laguerre polynomials satisfy the Hardy–Hille formula[27][28] where the series on the left converges for and . Using the identity (see generalized hypergeometric function), this can also be written as where denotes the modified Bessel function of the first kind, defined asThis formula is a generalization of the Mehler kernel for Hermite polynomials, which can be recovered from it by setting the Hermite polynomials as a special case of the associated Laguerre polynomials.
Substitute and take the limit, we obtain [29]The formula is named after G. H. Hardy and Einar Hille.[30][31]
Remove ads
Physics convention
Summarize
Perspective
The generalized Laguerre polynomials are used to describe the quantum wavefunction for hydrogen atom orbitals.[32][33][34] The convention used throughout this article expresses the generalized Laguerre polynomials as [35]
where is the confluent hypergeometric function. In the physics literature,[34] the generalized Laguerre polynomials are instead defined as
The physics version is related to the standard version by
There is yet another, albeit less frequently used, convention in the physics literature [36][37][38]
Remove ads
Umbral calculus convention
Generalized Laguerre polynomials are linked to Umbral calculus by being Sheffer sequences for when multiplied by . In Umbral Calculus convention,[39] the default Laguerre polynomials are defined to bewhere are the signless Lah numbers. is a sequence of polynomials of binomial type, ie they satisfy
Remove ads
See also
- Orthogonal polynomials
- Rodrigues' formula
- Angelescu polynomials
- Bessel polynomials
- Denisyuk polynomials
- Transverse mode, an important application of Laguerre polynomials to describe the field intensity within a waveguide or laser beam profile.
Notes
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads