Top Qs
Timeline
Chat
Perspective
Le Potier's vanishing theorem
Generalizes the Kodaira vanishing theorem for ample vector bundle From Wikipedia, the free encyclopedia
Remove ads
In algebraic geometry, Le Potier's vanishing theorem is an extension of the Kodaira vanishing theorem, on vector bundles. The theorem states the following[1][2][3][4][5][6][7][8][9]
Le Potier (1975): Let X be a n-dimensional compact complex manifold and E a holomorphic vector bundle of rank r over X, here is Dolbeault cohomology group, where denotes the sheaf of holomorphic p-forms on X. If E is an ample, then
- for .
from Dolbeault theorem,
- for .
By Serre duality, the statements are equivalent to the assertions:
- for .
In case of r = 1, and let E is an ample (or positive) line bundle on X, this theorem is equivalent to the Nakano vanishing theorem. Also, Schneider (1974) found another proof.
Sommese (1978) generalizes Le Potier's vanishing theorem to k-ample and the statement as follows:[2]
Le Potier–Sommese vanishing theorem: Let X be a n-dimensional algebraic manifold and E is a k-ample holomorphic vector bundle of rank r over X, then
- for .
Demailly (1988) gave a counterexample, which is as follows:[1][10]
Conjecture of Sommese (1978): Let X be a n-dimensional compact complex manifold and E a holomorphic vector bundle of rank r over X. If E is an ample, then
- for is false for
Remove ads
See also
- vanishing theorem
- Barth–Lefschetz theorem
Note
References
Further reading
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads