Top Qs
Timeline
Chat
Perspective
Lehmann–Scheffé theorem
Theorem in statistics From Wikipedia, the free encyclopedia
Remove ads
In statistics, the Lehmann–Scheffé theorem ties together completeness, sufficiency, uniqueness, and best unbiased estimation.[1] The theorem states that any estimator that is unbiased for a given unknown quantity and that depends on the data only through a complete, sufficient statistic is the unique best unbiased estimator of that quantity. The Lehmann–Scheffé theorem is named after Erich Leo Lehmann and Henry Scheffé, given their two early papers.[2][3]
This article needs additional citations for verification. (April 2011) |
If is a complete sufficient statistic for and then is the uniformly minimum-variance unbiased estimator (UMVUE) of .
Remove ads
Statement
Let be a random sample from a distribution that has p.d.f (or p.m.f in the discrete case) where is a parameter in the parameter space. Suppose is a sufficient statistic for θ, and let be a complete family. If then is the unique MVUE of θ.
Proof
By the Rao–Blackwell theorem, if is an unbiased estimator of θ then defines an unbiased estimator of θ with the property that its variance is not greater than that of .
Now we show that this function is unique. Suppose is another candidate MVUE estimator of θ. Then again defines an unbiased estimator of θ with the property that its variance is not greater than that of . Then
Since is a complete family
and therefore the function is the unique function of Y with variance not greater than that of any other unbiased estimator. We conclude that is the MVUE.
Remove ads
Example for when using a non-complete minimal sufficient statistic
Summarize
Perspective
An example of an improvable Rao–Blackwell improvement, when using a minimal sufficient statistic that is not complete, was provided by Galili and Meilijson in 2016.[4] Let be a random sample from a scale-uniform distribution with unknown mean and known design parameter . In the search for "best" possible unbiased estimators for , it is natural to consider as an initial (crude) unbiased estimator for and then try to improve it. Since is not a function of , the minimal sufficient statistic for (where and ), it may be improved using the Rao–Blackwell theorem as follows:
However, the following unbiased estimator can be shown to have lower variance:
And in fact, it could be even further improved when using the following estimator:
The model is a scale model. Optimal equivariant estimators can then be derived for loss functions that are invariant.[5]
Remove ads
See also
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads