Lomonosov's invariant subspace theorem
From Wikipedia, the free encyclopedia
Lomonosov's invariant subspace theorem is a mathematical theorem from functional analysis concerning the existence of invariant subspaces of a linear operator on some complex Banach space. The theorem was proved in 1973 by the Russian–American mathematician Victor Lomonosov.[1]
Lomonosov's invariant subspace theorem
Notation and terminology
Let be the space of bounded linear operators from some space to itself. For an operator we call a closed subspace an invariant subspace if , i.e. for every .
Theorem
Let be an infinite dimensional complex Banach space, be compact and such that . Further let be an operator that commutes with . Then there exist an invariant subspace of the operator , i.e. .[2]
Citations
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.