Lomonosov's invariant subspace theorem

From Wikipedia, the free encyclopedia

Lomonosov's invariant subspace theorem is a mathematical theorem from functional analysis concerning the existence of invariant subspaces of a linear operator on some complex Banach space. The theorem was proved in 1973 by the Russian–American mathematician Victor Lomonosov.[1]

Lomonosov's invariant subspace theorem

Notation and terminology

Let be the space of bounded linear operators from some space to itself. For an operator we call a closed subspace an invariant subspace if , i.e. for every .

Theorem

Let be an infinite dimensional complex Banach space, be compact and such that . Further let be an operator that commutes with . Then there exist an invariant subspace of the operator , i.e. .[2]

Citations

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.