Manin–Drinfeld theorem
The difference of two cusps of a modular curve has finite order in the Jacobian variety From Wikipedia, the free encyclopedia
In mathematics, the Manin–Drinfeld theorem, proved by Manin (1972) and Drinfeld (1973), states that the difference of two cusps of a modular curve has finite order in the Jacobian variety.
References
- Drinfeld, V. G. (1973), "Two theorems on modular curves", Akademija Nauk SSSR. Funkcionalnyi Analiz i ego Priloženija, 7 (2): 83–84, ISSN 0374-1990, MR 0318157
- Manin, Ju. I. (1972), "Parabolic points and zeta functions of modular curves", Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 36 (1): 19–66, Bibcode:1972IzMat...6...19M, doi:10.1070/IM1972v006n01ABEH001867, ISSN 0373-2436, MR 0314846
Wikiwand - on
Seamless Wikipedia browsing. On steroids.