Top Qs
Timeline
Chat
Perspective

Mars trojan

Celestial bodies that share the orbit of Mars From Wikipedia, the free encyclopedia

Mars trojan
Remove ads

The Mars trojans are a group of trojan objects that share the orbit of the planet Mars around the Sun. They can be found around the two Lagrangian points 60° ahead of and behind Mars. The origin of the Mars trojans is not well understood. One theory suggests that they were primordial objects left over from the formation of Mars that were captured in its Lagrangian points as the Solar System was forming. However, spectral studies of the Mars trojans indicate this may not be the case.[1][2] Another explanation involves asteroids chaotically wandering into the Mars Lagrangian points later in the Solar System's formation. This is also questionable considering the short dynamical lifetimes of these objects.[3][4] The spectra of Eureka and two other Mars trojans indicates an olivine-rich composition.[5] Since olivine-rich objects are rare in the asteroid belt it has been suggested that some of the Mars trojans are captured debris from a large orbit-altering impact on Mars when it encountered a planetary embryo.[6][3]

Thumb
The L5 group (shown in green) and the L4 group (light blue) of Mars and Jupiter trojan asteroids shown along with the orbits of Jupiter and the inner planets. Mars is shown in red. The outer orbit is that of Jupiter.
Thumb
Animation of 1999 UJ7 relative to Sun and Mars 1600-2500
   Sun ·   1999 UJ7 ·   Mars
Thumb
Animation of 2007 NS2 relative to Sun and Mars 1600-2500
   Sun ·   2007 NS2 ·   Mars

Presently, this group contains 17 asteroids confirmed to be stable Mars trojans by long-term numerical simulations but only nine of them are accepted by the Minor Planet Center.[7][3][4][8][9][10][11]

Due to close orbital similarities, most of the smaller members of the L5 group are hypothesized to be fragments of Eureka that were detached after the YORP effect accelerated Eureka's rotational period to the present 2.69 hours. The L4 trojan 1999 UJ7 has a much longer rotational period of ~50 h, apparently due to a chaotic rotation that prevents YORP spinup.[12] The spectrum of 121514 show a certain resemblance to that of 2023 FW14 and a common origin cannot be discarded.[13] The spectra of 121514 and 2023 FW14 are very different from those of the Eureka asteroid family members.

More information Designation, Cloud ...
Remove ads

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads