The Maxwell–Boltzmann (
) distribution
describes the velocities
or the kinetic energy
of the particles at thermal equilibrium, far from the limit of the speed of light, i.e.:
;\theta )=\left(\pi m^{2}\theta ^{2}\right)^{-d/2}e^{-{\frac {\mathbf {p} ^{2}/2m}{k_{\text{B}}T}}}}
 | | 1a |

Or, in terms of the kinetic energy:
 | | 1b |

where
is the temperature in speed dimensions, called thermal speed, and d denotes the kinetic degrees of freedom of each particle. (Note that the temperature is defined in the fluid's rest frame, where the bulk speed
is zero. In the non-relativistic case, this can be shown by using
.
The relativistic generalization of Eq. (1a), that is, the Maxwell–Jüttner (
) distribution, is given by:
 | | 2 |
where
and
. (Note that the inverse of the unitless temperature
is the relativistic coldness
, Rezzola and Zanotti, 2013.) This distribution (Eq. 2) can be derived as follows. According to the relativistic formalism for the particle momentum and energy, one has
 | | 3 |
While the kinetic energy is given by
. The Boltzmann distribution of a Hamiltonian is
In the absence of a potential energy,
is simply given by the particle energy
, thus:
 | | 4a |
(Note that
is the sum of the kinetic
and inertial energy
). Then, when one includes the
-dimensional density of states:
 | | 4b |
So that:
![{\displaystyle {\begin{aligned}\int \operatorname {pdf} _{\text{MJ}}(\mathbf {p} )\mathrm {d} p_{1}\cdots \mathrm {d} p_{d}&\propto \int e^{-{\frac {E(\mathbf {p} )}{k_{\text{B}}T}}}\mathrm {d} p_{1}\cdots \mathrm {d} p_{d}\\[1ex]&=\int e^{-{\frac {E(\gamma \Omega _{d})}{k_{\text{B}}T}}}\mathrm {d} \Omega _{d}p^{d-1}\mathrm {d} p\\[1ex]&=\int \limits _{\Omega _{d}}e^{-{\frac {E(\gamma \Omega _{d})}{k_{\text{B}}T}}}\,\left(p(\gamma )^{d-1}{\frac {\mathrm {d} p(\gamma )}{\mathrm {d} \gamma }}\right)\mathrm {d} \Omega _{d}\mathrm {d} \gamma \end{aligned}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/96f616113c88b7b4c3342c9a30f3cf3b11141da8)
Where
denotes the
-dimensional solid angle. For isotropic distributions, one has
 | | 5a |
or
 | | 5b |
Then,
so that:
 | | 6 |
Or:
 | | 7 |
Now, because
. Then, one normalises the distribution Eq. (7). One sets
 | | 8 |
And the angular integration:

Where
is the surface of the unit d-dimensional sphere. Then, using the identity
one has:
;\theta )\mathrm {d} p_{1}\cdots \mathrm {d} p_{d}=N\,{\frac {1}{2}}B_{d}\left(mc\right)^{d}\,e^{-{\frac {\gamma }{\theta }}}(\gamma ^{2}-1)^{{\frac {d}{2}}-1}\mathrm {d} (\gamma ^{2}-1).}
 | | 9 |
and
;\theta )\mathrm {d} p_{1}\cdots \mathrm {d} p_{d}\\[1ex]&=N\,{\frac {1}{2}}B_{d}(mc)^{d}\,\int _{1}^{\infty }e^{-{\frac {\gamma }{\theta }}}(\gamma ^{2}-1)^{{\frac {d}{2}}-1}\mathrm {d} (\gamma ^{2}-1)\\[1ex]&=N\,{\frac {1}{2}}B_{d}\left({\frac {d}{2}}\right)^{-1}(mc)^{d}\theta ^{-1}\,\int _{1}^{\infty }e^{\frac {\gamma }{\theta }}(\gamma ^{2}-1)^{\frac {d}{2}}\mathrm {d} \gamma \\[1ex]&=N\,{\frac {1}{2}}B_{d}\left({\frac {d}{2}}\right)^{-1}(mc)^{d}\theta ^{-1}\,I_{d},\end{aligned}}}
![{\displaystyle {\begin{aligned}1&=\int _{-\infty }^{\infty }\operatorname {pdf} _{\text{MJ}}(\mathbf {p} ;\theta )\mathrm {d} p_{1}\cdots \mathrm {d} p_{d}\\[1ex]&=N\,{\frac {1}{2}}B_{d}(mc)^{d}\,\int _{1}^{\infty }e^{-{\frac {\gamma }{\theta }}}(\gamma ^{2}-1)^{{\frac {d}{2}}-1}\mathrm {d} (\gamma ^{2}-1)\\[1ex]&=N\,{\frac {1}{2}}B_{d}\left({\frac {d}{2}}\right)^{-1}(mc)^{d}\theta ^{-1}\,\int _{1}^{\infty }e^{\frac {\gamma }{\theta }}(\gamma ^{2}-1)^{\frac {d}{2}}\mathrm {d} \gamma \\[1ex]&=N\,{\frac {1}{2}}B_{d}\left({\frac {d}{2}}\right)^{-1}(mc)^{d}\theta ^{-1}\,I_{d},\end{aligned}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/589fc47515d08bfe1aecbd2682c927e5e3cd063a) | | 10 |
Where one has defined the integral:
 | | 11 |
The Macdonald function (Modified Bessel function of the II kind) (Abramowitz and Stegun, 1972, p.376) is defined by:
 | | 12 |
So that, by setting
one obtains:
 | | 13 |
Hence,
 | | 14a |
Or
 | | 14b |
The inverse of the normalization constant gives the partition function 
 | | 14c |
Therefore, the normalized distribution is:
 | | 15a |
Or one may derive the normalised distribution in terms of:
;\theta )\mathrm {d} \gamma ={\frac {\pi ^{\frac {1}{2}}2^{\frac {1-d}{2}}}{\Gamma {\left({\frac {d}{2}}\right)}}}\operatorname {K} _{\frac {d+1}{2}}\left({\frac {1}{\theta }}\right)^{-1}\theta ^{\frac {1-d}{2}}e^{-{\frac {\gamma }{\theta }}}(\gamma ^{2}-1)^{{\frac {d}{2}}-1}\gamma \mathrm {d} \gamma }
 | | 15b |
Note that
can be shown to coincide with the thermodynamic definition of temperature.
Also useful is the expression of the distribution in the velocity space.[6] Given that
, one has:
![{\displaystyle {\begin{aligned}\mathrm {d} p_{1}\cdots \mathrm {d} p_{d}=p^{d-1}\mathrm {d} p\mathrm {d} \Omega _{d}&=(mc)^{d}\gamma ^{d-1}\beta ^{d-1}{\frac {\mathrm {d} (\beta \gamma )}{\mathrm {d} \beta }}\mathrm {d} \beta \mathrm {d} \Omega _{d}\\&=(mc)^{d}\gamma ^{d+2}\beta ^{d-1}{\text{dβd}}\Omega _{d}\\[1ex]&=(mc)^{d}\gamma ^{d+2}\mathrm {d} \beta _{1}\cdots \mathrm {d} \beta _{d}\end{aligned}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/ecce488d276021db6ec8a1ae888cf49659268504)
Hence
;\theta )\mathrm {d} \beta _{1}\cdots \mathrm {d} \beta _{d}=\pi ^{\frac {1-d}{2}}2^{-{\frac {d+1}{2}}}\,\theta ^{\frac {1-d}{2}}\operatorname {K} _{\frac {d+1}{2}}\left({\frac {1}{\theta }}\right)^{-1}e^{-{\frac {\gamma (\beta )}{\theta }}}\gamma (\beta )^{d+2}\mathrm {d} \beta _{1}\cdots \mathrm {d} \beta _{d}}
 | | 15c |
Take
(the “classic case” in our world):
 | | 16a |
And
;\theta )\mathrm {d} \gamma ={\frac {1}{\theta }}\operatorname {K} _{2}\left({\frac {1}{\theta }}\right)^{-1}\,e^{-{\frac {\gamma }{\theta }}}(\gamma ^{2}-1)^{\frac {1}{2}}\gamma \mathrm {d} \gamma }
 | | 16b |
;\theta )\mathrm {d} \beta _{1}\mathrm {d} \beta _{2}\mathrm {d} \beta _{3}={\frac {4}{\pi }}\,{\frac {1}{\theta }}\operatorname {K} _{2}\left({\frac {1}{\theta }}\right)^{-1}\,e^{-{\frac {\gamma (\beta )}{\theta }}}\gamma (\beta )^{5}\mathrm {d} \beta _{1}\mathrm {d} \beta _{2}\mathrm {d} \beta _{3}}
 | | 16c |
Note that when the
distribution clearly deviates from the
distribution of the same temperature and dimensionality, one can misinterpret and deduce a different
distribution that will give a good approximation to the
distribution. This new
distribution can be either:
- a convected
distribution, that is, an
distribution with the same dimensionality, but with different temperature
and bulk speed
(or bulk energy
)
- an
distribution with the same bulk speed, but with different temperature
and degrees of freedom
. These two types of approximations are illustrated.