Top Qs
Timeline
Chat
Perspective
Moduli stack of formal group laws
From Wikipedia, the free encyclopedia
Remove ads
Remove ads
In algebraic geometry, the moduli stack of formal group laws is a stack classifying formal group laws and isomorphisms between them. It is denoted by . It is a "geometric object" that underlies the chromatic approach to the stable homotopy theory, a branch of algebraic topology.
Currently, it is not known whether is a derived stack or not. Hence, it is typical to work with stratifications. Let be given so that consists of formal group laws over R of height exactly n. They form a stratification of the moduli stack . is faithfully flat. In fact, is of the form where is a profinite group called the Morava stabilizer group. The Lubin–Tate theory describes how the strata fit together.
Remove ads
References
- Lurie, J. (2010). "Chromatic Homotopy Theory". 252x (35 lectures). Harvard University.
- Goerss, P.G. (2009). "Realizing families of Landweber exact homology theories" (PDF). New topological contexts for Galois theory and algebraic geometry (BIRS 2008). Geometry & Topology Monographs. Vol. 16. pp. 49–78. arXiv:0905.1319. doi:10.2140/gtm.2009.16.49.
Further reading
- Mathew, A.; Meier, L. (2015). "Affineness and chromatic homotopy theory". Journal of Topology. 8 (2): 476–528. arXiv:1311.0514. doi:10.1112/jtopol/jtv005.
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads