Top Qs
Timeline
Chat
Perspective
Moessner's theorem
Theorem in number theory From Wikipedia, the free encyclopedia
Remove ads
Remove ads
In number theory, Moessner's theorem or Moessner's magic[1] is related to an arithmetical algorithm to produce an infinite sequence of the exponents of positive integers with by recursively manipulating the sequence of integers algebraically. The algorithm was first published by Alfred Moessner[2] in 1951; the first proof of its validity was given by Oskar Perron[3] that same year.[4]
For example, for , one can remove every even number, resulting in , and then add each odd number to the sum of all previous elements, providing .
Remove ads
Construction
Summarize
Perspective
Write down every positive integer and remove every -th element, with a positive integer. Build a new sequence of partial sums with the remaining numbers. Continue by removing every -st element in the new sequence and producing a new sequence of partial sums. For the sequence , remove the -st elements and produce a new sequence of partial sums.
The procedure stops at the -th sequence. The remaining sequence will correspond to [4][5]
Example
The initial sequence is the sequence of positive integers,
For , we remove every fourth number from the sequence of integers and add up each element to the sum of the previous elements
Now we remove every third element and continue to add up the partial sums
Remove every second element and continue to add up the partial sums
- ,
which recovers .
Variants
If the triangular numbers are removed instead, a similar procedure leads to the sequence of factorials [1]
Remove ads
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads