Top Qs
Timeline
Chat
Perspective

Motzkin–Taussky theorem

Theorem on linear operators From Wikipedia, the free encyclopedia

Remove ads

The Motzkin–Taussky theorem is a result from operator and matrix theory about the representation of a sum of two bounded, linear operators (resp. matrices). The theorem was proven by Theodore Motzkin and Olga Taussky-Todd.[1]

The theorem is used in perturbation theory, where e.g. operators of the form

are examined.

Remove ads

Statement

Let be a finite-dimensional complex vector space. Furthermore, let be such that all linear combinations

are diagonalizable for all . Then all eigenvalues of are of the form

(i.e. they are linear in und ) and are independent of the choice of .[2]

Here stands for an eigenvalue of .

Comments

  • Motzkin and Taussky call the above property of the linearity of the eigenvalues in property L.[3]
Remove ads

Bibliography

  • Kato, Tosio (1995). Perturbation Theory for Linear Operators. Classics in Mathematics. Vol. 132 (2 ed.). Berlin, Heidelberg: Springer. p. 86. doi:10.1007/978-3-642-66282-9. ISBN 978-3-540-58661-6. 
  • Friedland, Shmuel (1981). "A generalization of the Motzkin-Taussky theorem". Linear Algebra and Its Applications. 36: 103–109. doi:10.1016/0024-3795(81)90223-8. 

Notes

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads