Musselman's theorem
About a common point of certain circles defined by an arbitrary triangle From Wikipedia, the free encyclopedia
In Euclidean geometry, Musselman's theorem is a property of certain circles defined by an arbitrary triangle.

Specifically, let be a triangle, and , , and its vertices. Let , , and be the vertices of the reflection triangle , obtained by mirroring each vertex of across the opposite side.[1] Let be the circumcenter of . Consider the three circles , , and defined by the points , , and , respectively. The theorem says that these three Musselman circles meet in a point , that is the inverse with respect to the circumcenter of of the isogonal conjugate or the nine-point center of .[2]
The common point is point in Clark Kimberling's list of triangle centers.[2][3]
History
The theorem was proposed as an advanced problem by John Rogers Musselman and René Goormaghtigh in 1939,[4] and a proof was presented by them in 1941.[5] A generalization of this result was stated and proved by Goormaghtigh.[6]
Goormaghtigh’s generalization
Summarize
Perspective
The generalization of Musselman's theorem by Goormaghtigh does not mention the circles explicitly.
As before, let , , and be the vertices of a triangle , and its circumcenter. Let be the orthocenter of , that is, the intersection of its three altitude lines. Let , , and be three points on the segments , , and , such that . Consider the three lines , , and , perpendicular to , , and though the points , , and , respectively. Let , , and be the intersections of these perpendicular with the lines , , and , respectively.
It had been observed by Joseph Neuberg, in 1884, that the three points , , and lie on a common line .[7] Let be the projection of the circumcenter on the line , and the point on such that . Goormaghtigh proved that is the inverse with respect to the circumcircle of of the isogonal conjugate of the point on the Euler line , such that .[8][9]
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.