Top Qs
Timeline
Chat
Perspective

Naimark's problem

From Wikipedia, the free encyclopedia

Remove ads
Remove ads

Naimark's problem is a question in functional analysis asked by Naimark (1951). It asks whether every C*-algebra that has only one irreducible -representation up to unitary equivalence is isomorphic to the -algebra of compact operators on some (not necessarily separable) Hilbert space.

The problem has been solved in the affirmative for special cases (specifically for separable and Type-I C*-algebras). Akemann & Weaver (2004) used the diamond principle to construct a C*-algebra with generators that serves as a counterexample to Naimark's problem. More precisely, they showed that the existence of a counterexample generated by elements is independent of the axioms of Zermelo–Fraenkel set theory and the axiom of choice ().

Whether Naimark's problem itself is independent of remains unknown.

Remove ads

See also

References

  • Akemann, Charles; Weaver, Nik (2004), "Consistency of a counterexample to Naimark's problem", Proceedings of the National Academy of Sciences of the United States of America, 101 (20): 7522–7525, arXiv:math.OA/0312135, Bibcode:2004PNAS..101.7522A, doi:10.1073/pnas.0401489101, MR 2057719, PMC 419638, PMID 15131270
  • Naimark, M. A. (1948), "Rings with involutions", Uspekhi Mat. Nauk, 3: 52–145
  • Naimark, M. A. (1951), "On a problem in the theory of rings with involution", Uspekhi Mat. Nauk, 6: 160–164


Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads