Natural-neighbor interpolation
Method of spatial interpolation From Wikipedia, the free encyclopedia
Natural-neighbor interpolation or Sibson interpolation is a method of spatial interpolation, developed by Robin Sibson.[1] The method is based on Voronoi tessellation of a discrete set of spatial points. This has advantages over simpler methods of interpolation, such as nearest-neighbor interpolation, in that it provides a smoother approximation to the underlying "true" function.

Formulation
Summarize
Perspective
The basic equation is:
where is the estimate at , are the weights and are the known data at . The weights, , are calculated by finding how much of each of the surrounding areas is "stolen" when inserting into the tessellation.
- Sibson weights
where A(x) is the volume of the new cell centered in x, and A(xi) is the volume of the intersection between the new cell centered in x and the old cell centered in xi.

where l(xi) is the measure of the interface between the cells linked to x and xi in the Voronoi diagram (length in 2D, surface in 3D) and d(xi), the distance between x and xi.
Properties
There are several useful properties of natural neighbor interpolation:[4]
- The method is an exact interpolator, in that the original data values are retained at the reference data points.
- The method creates a smooth surface free from any discontinuities.
- The method is entirely local, as it is based on a minimal subset of data locations that excludes locations that, while close, are more distant than another location in a similar direction.
- The method is spatially adaptive, automatically adapting to local variation in data density or spatial arrangement.
- There is no requirement to make statistical assumptions.
- The method can be applied to very small datasets as it is not statistically based.
- The method is parameter free, so no input parameters that will affect the success of the interpolation need to be specified.
Extensions
Natural neighbor interpolation has also been implemented in a discrete form, which has been demonstrated to be computationally more efficient in at least some circumstances.[5] A form of discrete natural neighbor interpolation has also been developed that gives a measure of interpolation uncertainty.[4]
See also
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.