Top Qs
Timeline
Chat
Perspective

Natural units

Units of measurement based on universal physical constants From Wikipedia, the free encyclopedia

Remove ads
Remove ads

In physics, natural unit systems are measurement systems for which selected physical constants have been set to 1 through nondimensionalization of physical units. For example, the speed of light c may be set to 1, and it may then be omitted, equating mass and energy directly E = m rather than using c as a conversion factor in the typical mass–energy equivalence equation E = mc2. A purely natural system of units has all of its dimensions collapsed, such that the physical constants completely define the system of units and the relevant physical laws contain no conversion constants.

While natural unit systems simplify the form of each equation, it is still necessary to keep track of the non-collapsed dimensions of each quantity or expression in order to reinsert physical constants (such dimensions uniquely determine the full formula).

Remove ads

Systems of natural units

Summarize
Perspective

Summary table

More information , , ...

where:

  • α is the fine-structure constant (α = e2 / 4πε0ħc ≈ 0.007297)
  • ηe = Gme2 / ħc1.7518×10−45
  • ηp = Gmp2 / ħc5.9061×10−39
  • A dash (—) indicates where the system is not sufficient to express the quantity.

Stoney units

More information , ...

The Stoney unit system uses the following defining constants:

c, G, ke, e,

where c is the speed of light, G is the gravitational constant, ke is the Coulomb constant, and e is the elementary charge.

George Johnstone Stoney's unit system preceded that of Planck by 30 years. He presented the idea in a lecture entitled "On the Physical Units of Nature" delivered to the British Association in 1874.[2] Stoney units did not consider the Planck constant, which was discovered only after Stoney's proposal.

Planck units

More information , ...

The Planck unit system uses the following defining constants:

c, , G, kB,

where c is the speed of light, is the reduced Planck constant, G is the gravitational constant, and kB is the Boltzmann constant.

Planck units form a system of natural units that is not defined in terms of properties of any prototype, physical object, or even elementary particle. They only refer to the basic structure of the laws of physics: c and G are part of the structure of spacetime in general relativity, and is at the foundation of quantum mechanics. This makes Planck units particularly convenient and common in theories of quantum gravity, including string theory.[citation needed]

Planck considered only the units based on the universal constants G, h, c, and kB to arrive at natural units for length, time, mass, and temperature, but no electromagnetic units.[7] The Planck system of units is now understood to use the reduced Planck constant, , in place of the Planck constant, h.[8]

Schrödinger units

More information , ...

The Schrödinger system of units (named after Austrian physicist Erwin Schrödinger) is seldom mentioned in literature. Its defining constants are:[10][11]

e, ħ, G, ke.

Geometrized units

Defining constants:

c, G.

The geometrized unit system,[12]:36 used in general relativity, the base physical units are chosen so that the speed of light, c, and the gravitational constant, G, are set to one.

Atomic units

More information , ...

The atomic unit system[17] uses the following defining constants:[18]:349[19]

me, e, ħ, 4πε0.

The atomic units were first proposed by Douglas Hartree and are designed to simplify atomic and molecular physics and chemistry, especially the hydrogen atom.[18]:349 For example, in atomic units, in the Bohr model of the hydrogen atom an electron in the ground state has orbital radius, orbital velocity and so on with particularly simple numeric values.

Natural units (particle and atomic physics)

More information , ...

This natural unit system, used only in the fields of particle and atomic physics, uses the following defining constants:[23]:509

c, me, ħ, ε0,

where c is the speed of light, me is the electron mass, ħ is the reduced Planck constant, and ε0 is the vacuum permittivity.

The vacuum permittivity ε0 is implicitly used as a nondimensionalization constant, as is evident from the physicists' expression for the fine-structure constant, written α = e2/(4π),[24][25] which may be compared to the corresponding expression in SI: α = e2/(4πε0ħc).[26]:128

Strong units

More information , ...

Defining constants:

c, mp, ħ.

Here, mp is the proton rest mass. Strong units are "convenient for work in QCD and nuclear physics, where quantum mechanics and relativity are omnipresent and the proton is an object of central interest".[27]

Remove ads

See also

Notes and references

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads