Top Qs
Timeline
Chat
Perspective

Oka's lemma

Theorem in mathematics about plurisubharmonic functions From Wikipedia, the free encyclopedia

Remove ads

In mathematics, Oka's lemma, proved by Kiyoshi Oka, states that in a domain of holomorphy in , the function is plurisubharmonic, where is the distance to the boundary. This property shows that the domain is pseudoconvex. Historically, this lemma was first shown in the Hartogs domain in the case of two variables. Furthermore, Oka's lemma is the inverse of Levi's problem (unramified Riemann domain over ). Perhaps, this is why Oka referred to Levi's problem as "problème inverse de Hartogs", and could explain why Levi's problem is occasionally referred to as Hartogs' Inverse Problem.

Remove ads

References

  • Harrington, Phillip S. (2007), "A quantitative analysis of Oka's lemma", Mathematische Zeitschrift, 256 (1): 113–138, doi:10.1007/s00209-006-0062-7, MR 2282262, S2CID 121735220
  • Harrington, Phillip S.; Shaw, Mei-Chi (2007), "The strong Oka's lemma, bounded plurisubharmonic functions and the -Neumann problem", Asian Journal of Mathematics, 11 (1): 127–139, doi:10.4310/AJM.2007.v11.n1.a12, MR 2304586
  • Herbig, A.-K.; McNeal, J. D. (2012), "Oka's lemma, convexity, and intermediate positivity conditions", Illinois Journal of Mathematics, 56 (1): 195–211 (2013), arXiv:1112.5138, doi:10.1215/ijm/1380287467, MR 3117025, S2CID 118437110
  • Oka, Kiyoshi (1953), "Sur les fonctions analytiques de plusieurs variables. IX. Domaines finis sans point critique intérieur", Japanese Journal of Mathematics, 23: 97–155 (1954), doi:10.4099/jjm1924.23.0_97, MR 0071089
  • Siu, Yum-Tong (1978), "Pseudoconvexity and the problem of Levi", Bulletin of the American Mathematical Society, 84 (4): 481–513, doi:10.1090/S0002-9904-1978-14483-8
Remove ads

Further reading


Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads