Top Qs
Timeline
Chat
Perspective

Ostrowski numeration

From Wikipedia, the free encyclopedia

Remove ads

In mathematics, Ostrowski numeration, named after Alexander Ostrowski, is either of two related numeration systems based on continued fractions: a non-standard positional numeral system for integers and a non-integer representation of real numbers.

Fix a positive irrational number α with continued fraction expansion [a0; a1, a2, ...]. Let (qn) be the sequence of denominators of the convergents pn/qn to α: so qn = anqn1 + qn2. Let αn denote Tn(α) where T is the Gauss map T(x) = {1/x}, and write βn = (1)n+1 α0 α1 ... αn: we have βn = anβn1 + βn2.

Remove ads

Real number representations

Every positive real x can be written as

where the integer coefficients 0 ≤ bnan and if bn = an then bn1 = 0.

Remove ads

Integer representations

Every positive integer N can be written uniquely as

where the integer coefficients 0 ≤ bnan and if bn = an then bn1 = 0.

If α is the golden ratio, then all the partial quotients an are equal to 1, the denominators qn are the Fibonacci numbers and we recover Zeckendorf's theorem on the Fibonacci representation of positive integers as a sum of distinct non-consecutive Fibonacci numbers.

Remove ads

See also

References

  • Allouche, Jean-Paul; Shallit, Jeffrey (2003). Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press. ISBN 978-0-521-82332-6. Zbl 1086.11015..
  • Epifanio, C.; Frougny, C.; Gabriele, A.; Mignosi, F.; Shallit, J. (2012). "Sturmian graphs and integer representations over numeration systems". Discrete Appl. Math. 160 (4–5): 536–547. doi:10.1016/j.dam.2011.10.029. ISSN 0166-218X. Zbl 1237.68134.
  • Ostrowski, Alexander (1921). "Bemerkungen zur Theorie der diophantischen Approximationen". Hamb. Abh. (in German). 1: 77–98. JFM 48.0197.04.
  • Pytheas Fogg, N. (2002). Berthé, Valérie; Ferenczi, Sébastien; Mauduit, Christian; Siegel, Anne (eds.). Substitutions in dynamics, arithmetics and combinatorics. Lecture Notes in Mathematics. Vol. 1794. Berlin: Springer-Verlag. ISBN 3-540-44141-7. Zbl 1014.11015.
Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads