Top Qs
Timeline
Chat
Perspective

Pohlke's theorem

From Wikipedia, the free encyclopedia

Remove ads

Pohlke's theorem is the fundamental theorem of axonometry. It was established 1853 by the German painter and teacher of descriptive geometry Karl Wilhelm Pohlke. The first proof of the theorem was published 1864 by the German mathematician Hermann Amandus Schwarz, who was a student of Pohlke. Therefore the theorem is sometimes called theorem of Pohlke and Schwarz, too.

The theorem

Summarize
Perspective
Thumb
Pohlke's theorem
  • Three arbitrary line sections in a plane originating at point , which are not contained in a line, can be considered as the parallel projection of three edges of a cube.

For a mapping of a unit cube, one has to apply an additional scaling either in the space or in the plane. Because a parallel projection and a scaling preserves ratios one can map an arbitrary point by the axonometric procedure below.

Pohlke's theorem can be stated in terms of linear algebra as:

  • Any affine mapping of the 3-dimensional space onto a plane can be considered as the composition of a similarity and a parallel projection.[1]
Remove ads

Application to axonometry

Summarize
Perspective
Thumb
the principle of axonometric projection

Pohlke's theorem is the justification for the following easy procedure to construct a scaled parallel projection of a 3-dimensional object using coordinates,:[2][3]

  1. Choose the images of the coordinate axes, not contained in a line.
  2. Choose for any coordinate axis forshortenings
  3. The image of a point is determined by the three steps, starting at point :
go in -direction, then
go in -direction, then
go in -direction and
4. mark the point as .

In order to get undistorted pictures, one has to choose the images of the axes and the forshortenings carefully (see Axonometry). In order to get an orthographic projection only the images of the axes are free and the forshortenings are determined. (see de:orthogonale Axonometrie).

Remove ads

Remarks on Schwarz's proof

Schwarz formulated and proved the more general statement:

and used a theorem of L’Huilier:

  • Every triangle can be considered as the orthographic projection of a triangle of a given shape.

Notes

Loading content...

References

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads