Top Qs
Timeline
Chat
Perspective
Porsche V8 engine
Reciprocating internal combustion engine From Wikipedia, the free encyclopedia
Remove ads
Porsche has produced a number of V8 gasoline engines over the years. Their first V8 engine debuted in 1977, in the Porsche 928.[10][11][12][13][14]
Remove ads
History
Summarize
Perspective
1977: First Generation
Porsche began a new chapter in their engine building history with the eight-cylinder V-engine in the 928. It is an all-alloy design with a linerless block cast of a hypereutectic aluminum-silicon alloy whose bore surfaces are created by etching the aluminum back, exposing the precipitated silicon using the Alusil process. The 4.5-liter engine had a relatively low compression ratio of 8.5:1, which allowed it to use 91-octane gasoline without pre-ignition, which was an important consideration Porsche. This did limit power output, which was at the more conservative end of the engine's capabilities. Their eight-cylinder engine made 176 kW (236 hp) at a moderate 5,500 rpm, which was sufficient for a top speed of 230 km/h. The engine’s nominal torque was 350 N⋅m (258 lb⋅ft) at 3,600 rpm.
Progressively, Porsche engineers leveraged the potential within the eight-cylinder engine. The 928 S debuted at the 1979 IAA car show. Its engine had bores that were two millimeters larger, which meant an engine displacement of 4.7 liters. Its compression ratio increased to 10.0:1, which required the use of super gasoline. Nonetheless, the powerplant sparkled with a large power boost to 221 kW (296 hp). This allowed the 928 S to break the 250 km/h speed barrier. Later, another increase of the compression ratio and a switch over to electronic fuel injection made another improvement in power to 228 kW (306 hp).
1986: Catalytic Converters and four-valves per cylinder
Porsche engineers presented their next trump in 1986. Over the course of introducing catalytic converter technology, including in Europe, the eight-cylinder engine received its most substantial redesign. The new CAT version had completely redesigned cylinder heads with four valves per combustion chamber and two camshafts per cylinder bank. Increasing the bore to 100 mm increased engine size to about five liters. The eight-cylinder engine with emissions control began with 212 kW (284 hp). Its power limit was set by its low compression ratio, because initially, only standard unleaded gasoline was available in Europe. This barrier fell in 1987 with the introduction of the 928 S4, whose five-liter engine was created for super gasoline, now producing 235 kW (315 hp). After two years, a GT variant was built, which created 243 kW (326 hp), thanks to sharper valve timing control. Manufacturing of the 928 model line ended in 1995, and this also denoted the end of the first era of eight-cylinder V-engines from Porsche.
2002: Second Generation

Seven years later, after production ended for the first generation engine, a third Porsche model line with a redesigned eight-cylinder engine caused quite a response. The sports car manufacturer had started on the new Cayenne SUV. The new engine line, with its entirely new design, constituted two engines. The 4.5-liter naturally-aspirated engine in the Cayenne S already produced 250 kW (335 hp). The new top-of-the-line eight-cylinder was an engine in its own class, with twin-turbocharging, and 331 kW (444 hp) of power from the same base engine. It catapulted the Cayenne Turbo into the highest class of the quickest SUVs of its time.
Three years after the turbocharged eight-cylinder engine made its debut, Porsche went to work to develop it into the engine of the Cayenne Turbo S. 383 kilowatts or 521 hp at 5,500 rpm – this made the new SUV the second most powerful production Porsche car ever built; behind the Carrera GT sports car.
2007: Gasoline Direct Injection
In 2007, Porsche introduced an updated and reworked Cayenne model line-up, whose engines were switched over to gasoline direct injection. To increase power, bores that were three millimeters larger raised engine displacement to 4.8 liters. The Cayenne Turbo also received new turbochargers with larger radial turbines. Afterward, the eight-cylinder engine in the Cayenne S had an output of 283 kW (380 hp). The turbo engine now made 368 kW (493 hp) of power. The start of direct fuel injection was a key part in decreasing fuel consumption figures of the Cayenne models in the New European Driving Cycle (NEDC) by an average of eight percent.
2009: Panamera
In 2009, Porsche presented the Panamera as its fourth model line, and with the Gran Turismo, two more development stages of the eight-cylinder engines. The adjusted exhaust system and optimized engine control of the naturally-aspirated engine produced 294 kW (394 hp) of boosted power and a nominal torque of 500 N⋅m (369 ft⋅lb). In the Panamera Turbo, the 4.8-liter V8 twin-turbo engine provided 368 kW (493 hp) and a maximum torque of 700 N⋅m (516 ft⋅lb). The extensive use of lightweight alloys and design improvements also decreased engine mass by several kilograms. Less than 12 months later, these engines were introduced into the Cayenne models as well.
Porsche produced even higher-powered versions for the exceptionally sports models of the Panamera and Cayenne. The eight-cylinder naturally-aspirated engine elevated the power of the Panamera GTS to 316 kW (424 hp), and in the Cayenne GTS to 309 kW (414 hp). The turbocharged engine in the Cayenne Turbo raised engine output to 382 kW (512 hp), in the Panamera Turbo S to 405 kW (543 hp), and in the Cayenne Turbo S in several stages up to 419 kW (562 hp).
2013: Third Generation
When the third, completely re-developed V8 from Porsche went into production in 2013, it wasn’t the engine itself that was the primary focus of attention, rather it was its counterpart: the electric drive. The 918 Spyder was the first super sports car to implement a hybrid drive system. Its primary source of power was a detuned racing engine; similar to the Carrera GT's engine. At 132 hp/liter displacement, it had the world’s highest specific power of a street-legal naturally-aspirated engine, and at the same time, it was the lightest production naturally-aspirated V8 engine, weighing only 135 kilograms. Rotating inside the eight-cylinder engine with its normal 90-degree cylinder bank angle, was a flat-plane crankshaft with 180-degree offset crank throws for the connecting rods.
Direct fuel injection
The MR6 engine was designed completely in-house by Porsche engineers with help from Penske Racing. The 3.4-litre 90-degree V8 racing engine was designed from scratch; and drove the rear wheels through a six-speed electro-pneumatic sequential gearbox. Since its introduction in 2005 the engine, which initially produced 478 horsepower (356 kW) has been developed and modified to meet the changing regulations of both the ALMS and the ACO. For 2008 the engine developed 503 horsepower (375 kW) using direct fuel injection and 440 horsepower (330 kW) in 2009-spec with air restrictor limitations.

The 4.6-liter engine was derived directly from the engine of the successful RS Spyder. It outputted 447 kW (599 hp) at 8,700 rpm. Porsche engineers created direct fuel injection with centrally located solenoid injectors – an especially efficient and low-emission combustion process. These injectors send fuel into the combustion chambers at pressures up to 200 bar through seven holes each. Extensive lightweight design measures meant such features as titanium connecting rods and thin-walled low-pressure castings of the crankcase and the cylinder heads.
The eight-cylinder V-engine emotionalized the 918 Spyder by its performance abilities and by its sound. In addition to the ignition sequence, this is attributable first and foremost to what is known as the “top pipes”: the tailpipes stop at the upper part of the rear end right above the engine. No other production vehicle used this solution. The top pipes’ greatest technical advantage is optimal heat rejection, since hot gases are exhausted via the shortest possible path, and exhaust gas back pressure remains low.
This type of HSI engine design, where HSI means “hot side inside,” the 918 engine created a solid foundation for the new eight-cylinder engine of the Panamera. It contains the spirit of forty years of V8 engines from Porsche.
2023: Porsche 963 LMDh

[15] For the Porsche 963 LMDh the V8 engine was derived from the Porsche 918 Spyder sharing about 80 of its components. At 4.6-litre displacement and a power output of 500 kW (671 hp) including the hybrid system. The engine weighs about 180 kilograms (400 lb). Within the 90-degree hot V twin vanderlee turbo systems are mounted.
Remove ads
Applications
Road cars
Race Cars
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads
