Top Qs
Timeline
Chat
Perspective
Prékopa–Leindler inequality
From Wikipedia, the free encyclopedia
Remove ads
In mathematics, the Prékopa–Leindler inequality is an integral inequality closely related to the reverse Young's inequality, the Brunn–Minkowski inequality and a number of other important and classical inequalities in analysis. The result is named after the Hungarian mathematicians András Prékopa and László Leindler.[1][2]
Statement of the inequality
Summarize
Perspective
Let 0 < λ < 1 and let f, g, h : Rn → [0, +∞) be non-negative real-valued measurable functions defined on n-dimensional Euclidean space Rn. Suppose that these functions satisfy
1 |
for all x and y in Rn. Then
Remove ads
Essential form of the inequality
Summarize
Perspective
Recall that the essential supremum of a measurable function f : Rn → R is defined by
This notation allows the following essential form of the Prékopa–Leindler inequality: let 0 < λ < 1 and let f, g ∈ L1(Rn; [0, +∞)) be non-negative absolutely integrable functions. Let
Then s is measurable and
The essential supremum form was given by Herm Brascamp and Elliott Lieb.[3] Its use can change the left side of the inequality. For example, a function g that takes the value 1 at exactly one point will not usually yield a zero left side in the "non-essential sup" form but it will always yield a zero left side in the "essential sup" form.
Remove ads
Relationship to the Brunn–Minkowski inequality
Summarize
Perspective
It can be shown that the usual Prékopa–Leindler inequality implies the Brunn–Minkowski inequality in the following form: if 0 < λ < 1 and A and B are bounded, measurable subsets of Rn such that the Minkowski sum (1 − λ)A + λB is also measurable, then
where μ denotes n-dimensional Lebesgue measure. Hence, the Prékopa–Leindler inequality can also be used[4] to prove the Brunn–Minkowski inequality in its more familiar form: if 0 < λ < 1 and A and B are non-empty, bounded, measurable subsets of Rn such that (1 − λ)A + λB is also measurable, then
Remove ads
Applications in probability and statistics
Summarize
Perspective
Log-concave distributions
The Prékopa–Leindler inequality is useful in the theory of log-concave distributions, as it can be used to show that log-concavity is preserved by marginalization and independent summation of log-concave distributed random variables. Since, if have pdf , and are independent, then is the pdf of , we also have that the convolution of two log-concave functions is log-concave.
Suppose that H(x,y) is a log-concave distribution for (x,y) ∈ Rm × Rn, so that by definition we have
2 |
and let M(y) denote the marginal distribution obtained by integrating over x:
Let y1, y2 ∈ Rn and 0 < λ < 1 be given. Then equation (2) satisfies condition (1) with h(x) = H(x,(1 − λ)y1 + λy2), f(x) = H(x,y1) and g(x) = H(x,y2), so the Prékopa–Leindler inequality applies. It can be written in terms of M as
which is the definition of log-concavity for M.
To see how this implies the preservation of log-convexity by independent sums, suppose that X and Y are independent random variables with log-concave distribution. Since the product of two log-concave functions is log-concave, the joint distribution of (X,Y) is also log-concave. Log-concavity is preserved by affine changes of coordinates, so the distribution of (X + Y, X − Y) is log-concave as well. Since the distribution of X+Y is a marginal over the joint distribution of (X + Y, X − Y), we conclude that X + Y has a log-concave distribution.
Applications to concentration of measure
The Prékopa–Leindler inequality can be used to prove results about concentration of measure.
Theorem[citation needed] Let , and set . Let denote the standard Gaussian pdf, and its associated measure. Then .
Remove ads
References
Further reading
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads