Top Qs
Timeline
Chat
Perspective
Rademacher system
From Wikipedia, the free encyclopedia
Remove ads
In mathematics, in particular in functional analysis, the Rademacher system, named after Hans Rademacher, is an incomplete orthogonal system of functions on the unit interval of the following form:

The Rademacher system is stochastically independent, and is closely related to the Walsh system. Specifically, the Walsh system can be constructed as a product of Rademacher functions.
To see that the Rademacher system is an incomplete orthogonal system and not an orthonormal basis, consider the function on the unit interval defined by the following equation:
This function is orthogonal to all the functions in the Rademacher system, yet is nonzero.
Remove ads
References
- Rademacher, Hans (1922). "Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen". Math. Ann. 87 (1): 112–138. doi:10.1007/BF01458040. S2CID 120708120.
- "Orthogonal system", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Heil, Christopher E. (1997). "A basis theory primer" (PDF).
- Curbera, Guillermo P. (2009). "How Summable are Rademacher Series?". Vector Measures, Integration and Related Topics. Basel: Birkhäuser Basel. pp. 135–148. doi:10.1007/978-3-0346-0211-2_13. ISBN 978-3-0346-0210-5.
Remove ads
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads