Top Qs
Timeline
Chat
Perspective

Radionuclide

Atom that has excess nuclear energy, making it unstable From Wikipedia, the free encyclopedia

Remove ads

A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that is unstable and known to undergo radioactive decay into a different nuclide, which may be another radionuclide (see decay chain) or be stable. Radiation emitted by radionuclides is almost always ionizing radiation because it is energetic enough to liberate an electron from another atom.

Radioactive decay is a random process at the level of single atoms: it is impossible to predict when one particular atom will decay.[1][2] However, for a collection of atoms of a single nuclide, the decay rate (considered as a statistical average), and thus the half-life (t1/2) for that nuclide, can be calculated from the measurement of the decay. The range of the half-lives of radioactive atoms has no known limits and spans a time range of over 55 orders of magnitude.

Radionuclides occur naturally and are artificially produced in nuclear reactors, cyclotrons, particle accelerators or radionuclide generators. There are 735 known radionuclides with half-lives longer than an hour (see list of nuclides); 35 of those are primordial radionuclides whose presence on Earth has persisted from its formation, and another 62 are detectable in nature, either as daughters of primordial radionuclides or as radionuclides produced through natural production on Earth by cosmic radiation. More than 2400 radionuclides have half-lives less than 60 minutes. Most of those are only produced artificially, and have very short half-lives. For comparison, there are 251 stable nuclides.

All the chemical elements have radionuclides - even the lightest element, hydrogen, has one well-known radionuclide, tritium (though helium, lithium, and boron have none with half-life over a second). Elements heavier than lead, and the elements technetium and promethium, have only radionuclides and do not exist in stable forms, though bismuth can generally be treated as stable with the half-life of its natural isotope being extremely long and its decay normally undetectable.

Exposure to radionuclides generally has, due to their radiation, a harmful effect on living organisms including humans, although low levels of exposure occur naturally. The degree of harm will depend on the nature and extent of the radiation produced, the amount and nature of exposure (close contact, inhalation or ingestion), and the biochemical properties of the element; with increased risk of cancer considered unavoidable. However, radionuclides with suitable properties are used in nuclear medicine for both diagnosis and treatment. An imaging tracer made with radionuclides is called a radioactive tracer. A pharmaceutical drug made with radionuclides is called a radiopharmaceutical.

Remove ads

Origin

Summarize
Perspective

Natural

On Earth, naturally occurring radionuclides fall into three categories: primordial radionuclides, secondary radionuclides, and cosmogenic radionuclides.

  • Radionuclides are produced in stellar nucleosynthesis and supernova explosions along with stable nuclides. Most decay quickly, but some can be observed astronomically and can play a part in understanding astrophysical processes. Primordial radionuclides, such as uranium and thorium, still exist because their half-lives are so long (>100 million years) that the Earth's initial content has not yet completely decayed. Some radionuclides have half-lives so long (many times the age of the universe) that decay has only recently been detected, and for most practical purposes they can be considered stable, most notably bismuth-209: detection of this decay meant that bismuth was no longer considered stable. It is possible that decay may be observed in other nuclides now considered stable, adding to the list of primordial radionuclides.[citation needed]
  • Secondary radionuclides are radiogenic isotopes derived from the decay of primordial radionuclides. They have shorter half-lives than primordial radionuclides. They arise in the decay chain of the primordial isotopes thorium-232, uranium-238, and uranium-235 - such as the natural isotopes of polonium and radium - some are also produced by natural fission and other nucleogenic processes.[citation needed]
  • Cosmogenic isotopes, such as carbon-14, are present because they are continually being formed on Earth, typically in the atmosphere, due to the action of cosmic rays.[citation needed]

Many of these radionuclides exist only in trace amounts in nature, including all cosmogenic nuclides. Secondary radionuclides in a decay chain will occur in proportion to their half-lives, so short-lived ones will be very rare. For example, polonium can be found in uranium ores at a concentration about 1 part 1010 of uranium (0.1 mg per metric ton) by calculating the ratio of half-lives of polonium-210 to uranium-238, its ultimate parent.[citation needed]

Nuclear fission

Radionuclides are produced as an unavoidable result of nuclear fission and nuclear explosions. The process of nuclear fission creates a wide range of fission products, most of which are radionuclides. Further radionuclides are created from irradiation of the nuclear fuel (creating a range of actinides) and of the surrounding structures, yielding activation products. This complex mixture of radionuclides with different chemistries and radioactivity makes handling nuclear waste and dealing with nuclear fallout particularly problematic.[citation needed]

Synthetic

Thumb
Americium-241 emitting alpha particles inserted into a cloud chamber

Synthetic radionuclides are created in nuclear reactors or by particle accelerators (not necesssarily on purpose) or as decay products of such:[3]

  • As well as being extracted from nuclear waste, radioisotopes can be produced deliberately with nuclear reactors, exploiting the high flux of neutrons present. These neutrons activate elements placed within the reactor. A typical product from a nuclear reactor is iridium-192, from activation of iridium targets. The elements that have a large propensity to take up neutrons in the reactor are said to have a high neutron cross-section, but even at low cross-sections this process is generally economical.
  • Particle accelerators such as cyclotrons accelerate particles to bombard a target to produce radionuclides. Cyclotrons accelerate (most often) protons at a target to produce positron-emitting radionuclides, e.g. fluorine-18.
  • Radionuclide generators, standard for many medical isotopes, contain a parent radionuclide that decays to produce a shorter-lived radioactive daughter. A typical example is the technetium-99m generator, which employs molybdenum-99 produced in a reactor.
Remove ads

Uses

Summarize
Perspective

Radionuclides are used in two major ways: either for their radiation alone (irradiation, nuclear batteries) or for the combination of chemical properties and their radiation (tracers, biopharmaceuticals). For scientific study they may be used for their chemical properties alone when there is no stable form of that element.

Remove ads

Examples

Summarize
Perspective

The following table lists properties of selected radionuclides illustrating the range of properties and uses.

More information Isotope, Z ...

Key: Z = atomic number; N = neutron number; DM = decay mode; DE = decay energy; EC = electron capture

Household smoke detectors

Thumb
Americium-241 container in a smoke detector.
Thumb
Americium-241 capsule as found in smoke detector. The circle of darker metal in the center is americium-241; the surrounding casing is aluminium.

Radionuclides are present in many homes as they are used inside the most common household smoke detectors. The radionuclide used is americium-241, which is created by bombarding plutonium with neutrons in a nuclear reactor. It decays by emitting alpha particles and gamma radiation to become neptunium-237. Smoke detectors use a very small quantity of 241Am (about 0.29 micrograms per smoke detector) in the form of americium dioxide. 241Am is used as it emits alpha particles which ionize the air in the detector's ionization chamber. A small electric voltage is applied to the ionized air which gives rise to a small electric current. In the presence of smoke, some of the ions are neutralized, thereby decreasing the current, which activates the detector's alarm.[8][9]

Remove ads

Impacts on organisms

Radionuclides that find their way into the environment may cause harmful effects as radioactive contamination. They can also cause damage if they are excessively used during treatment or in other ways exposed to living beings, by radiation poisoning. Potential health damage from exposure to radionuclides depends on a number of factors, and "can damage the functions of healthy tissue/organs. Radiation exposure can produce effects ranging from skin redness and hair loss, to radiation burns and acute radiation syndrome. Prolonged exposure can lead to cells being damaged and in turn lead to cancer. Signs of cancerous cells might not show up until years, or even decades, after exposure."[10]

Remove ads

Summary table for classes of nuclides, stable and radioactive

Summarize
Perspective

Following is a summary table for the list of 986 nuclides with half-lives greater than one hour. A total of 251 nuclides have never been observed to decay, and are classically considered stable. Of these, 90 are believed to be absolutely stable except to proton decay (which has never been observed), while the rest are "observationally stable" and theoretically can undergo radioactive decay with extremely long half-lives.[citation needed]

The remaining tabulated radionuclides have half-lives longer than 1 hour, and are well-characterized (see list of nuclides for a complete tabulation). They include 31 nuclides with measured half-lives longer than the estimated age of the universe (13.8 billion years[11]), and another four nuclides with half-lives long enough (> 100 million years) that they are radioactive primordial nuclides, and may be detected on Earth, having survived from their presence in interstellar dust since before the formation of the Solar System, about 4.6 billion years ago. Another 60+ short-lived nuclides can be detected naturally as daughters of longer-lived nuclides or cosmic-ray products. The remaining known nuclides are known solely from artificial nuclear transmutation.[citation needed]

Numbers may change slightly in the future as some nuclides now classified as stable are observed to be radioactive with very long half-lives.[citation needed]

This is a summary table[12] for the 986 nuclides with half-lives longer than one hour (including those that are stable), given in list of nuclides.

More information Stability class, Number of nuclides ...
Remove ads

See also

Notes

References

Further reading

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads