Relaxation (approximation)

From Wikipedia, the free encyclopedia

In mathematical optimization and related fields, relaxation is a modeling strategy. A relaxation is an approximation of a difficult problem by a nearby problem that is easier to solve. A solution of the relaxed problem provides information about the original problem.

For example, a linear programming relaxation of an integer programming problem removes the integrality constraint and so allows non-integer rational solutions. A Lagrangian relaxation of a complicated problem in combinatorial optimization penalizes violations of some constraints, allowing an easier relaxed problem to be solved. Relaxation techniques complement or supplement branch and bound algorithms of combinatorial optimization; linear programming and Lagrangian relaxations are used to obtain bounds in branch-and-bound algorithms for integer programming.[1]

The modeling strategy of relaxation should not be confused with iterative methods of relaxation, such as successive over-relaxation (SOR); iterative methods of relaxation are used in solving problems in differential equations, linear least-squares, and linear programming.[2][3][4] However, iterative methods of relaxation have been used to solve Lagrangian relaxations.[a]

Definition

Summarize
Perspective

A relaxation of the minimization problem

is another minimization problem of the form

with these two properties

  1. for all .

The first property states that the original problem's feasible domain is a subset of the relaxed problem's feasible domain. The second property states that the original problem's objective-function is greater than or equal to the relaxed problem's objective-function.[1]

Properties

If is an optimal solution of the original problem, then and . Therefore, provides an upper bound on .

If in addition to the previous assumptions, , , the following holds: If an optimal solution for the relaxed problem is feasible for the original problem, then it is optimal for the original problem.[1]

Some relaxation techniques

Notes

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.