Top Qs
Timeline
Chat
Perspective

Quotient of a formal language

From Wikipedia, the free encyclopedia

Remove ads
Remove ads

In mathematics and computer science, the right quotient (or simply quotient) of a language with respect to language is the language consisting of strings w such that wx is in for some string x in .[1] Formally:

In other words, for all the strings in that have a suffix in , the suffix is removed.

Similarly, the left quotient of with respect to is the language consisting of strings w such that xw is in for some string x in . Formally:

In other words, we take all the strings in that have a prefix in , and remove this prefix.

Note that the operands of are in reverse order: the first operand is and is second.

Remove ads

Example

Consider and

Now, if we insert a divider into an element of , the part on the right is in only if the divider is placed adjacent to a b (in which case i  n and j = n) or adjacent to a c (in which case i = 0 and j  n). The part on the left, therefore, will be either or ; and can be written as

Remove ads

Properties

Some common closure properties of the quotient operation include:

  • The quotient of a regular language with any other language is regular.
  • The quotient of a context free language with a regular language is context free.
  • The quotient of two context free languages can be any recursively enumerable language.
  • The quotient of two recursively enumerable languages is recursively enumerable.

These closure properties hold for both left and right quotients.

Remove ads

See also

References

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads