Top Qs
Timeline
Chat
Perspective

Ringel–Hall algebra

From Wikipedia, the free encyclopedia

Remove ads

In mathematics, a Ringel–Hall algebra is a generalization of the Hall algebra, studied by Claus Michael Ringel (1990). It has a basis of equivalence classes of objects of an abelian category, and the structure constants for this basis are related to the numbers of extensions of objects in the category.

Remove ads

References

  • Lusztig, George (1991), "Quivers, perverse sheaves, and quantized enveloping algebras", Journal of the American Mathematical Society, 4 (2): 365–421, CiteSeerX 10.1.1.454.3334, doi:10.1090/S0894-0347-1991-1088333-2, JSTOR 2939279, MR 1088333
  • Ringel, Claus Michael (1990), "Hall algebras and quantum groups", Inventiones Mathematicae, 101 (3): 583–591, Bibcode:1990InMat.101..583R, doi:10.1007/BF01231516, MR 1062796, S2CID 120480847
  • Schiffmann, Olivier (2006). "Lectures on Hall algebras". arXiv:math/0611617.
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads