Top Qs
Timeline
Chat
Perspective
Ringel–Hall algebra
From Wikipedia, the free encyclopedia
Remove ads
In mathematics, a Ringel–Hall algebra is a generalization of the Hall algebra, studied by Claus Michael Ringel (1990). It has a basis of equivalence classes of objects of an abelian category, and the structure constants for this basis are related to the numbers of extensions of objects in the category.
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. (June 2024) |
Remove ads
References
- Lusztig, George (1991), "Quivers, perverse sheaves, and quantized enveloping algebras", Journal of the American Mathematical Society, 4 (2): 365–421, CiteSeerX 10.1.1.454.3334, doi:10.1090/S0894-0347-1991-1088333-2, JSTOR 2939279, MR 1088333
- Ringel, Claus Michael (1990), "Hall algebras and quantum groups", Inventiones Mathematicae, 101 (3): 583–591, Bibcode:1990InMat.101..583R, doi:10.1007/BF01231516, MR 1062796, S2CID 120480847
- Schiffmann, Olivier (2006). "Lectures on Hall algebras". arXiv:math/0611617.
Remove ads
External links
- Hubery, Andrew W., Introduction to Ringel–Hall algebras (PDF), Bielefeld University
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads