Top Qs
Timeline
Chat
Perspective

Rotunda (geometry)

Solid made by joining an n- and 2n-gon with triangles and pentagons From Wikipedia, the free encyclopedia

Rotunda (geometry)
Remove ads

In geometry, a rotunda is any member of a family of dihedral-symmetric polyhedra. They are similar to a cupola but instead of alternating squares and triangles, it alternates pentagons and triangles around an axis. The pentagonal rotunda is a Johnson solid.

Quick Facts Set of rotundas, Faces ...

Other forms can be generated with dihedral symmetry and distorted equilateral pentagons. [example needed]

Remove ads

Examples

Rotundas
3 4 5 6 7 8
Thumb
triangular rotunda
Thumb
square rotunda
Thumb
pentagonal rotunda
Thumb
hexagonal rotunda
Thumb
heptagonal rotunda
Thumb
octagonal rotunda

Star-rotunda

Star-rotundas
5 7 9 11
Thumb
Pentagrammic rotunda
Thumb
Heptagrammic rotunda
Thumb
Enneagrammic rotunda
Thumb
Hendecagrammic rotunda

See also

References

  • Norman W. Johnson, "Convex Solids with Regular Faces", Canadian Journal of Mathematics, 18, 1966, pages 169200. Contains the original enumeration of the 92 solids and the conjecture that there are no others.
  • Victor A. Zalgaller (1969). Convex Polyhedra with Regular Faces. Consultants Bureau. No ISBN. The first proof that there are only 92 Johnson solids.
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads