| Cents | Note (from C) | Freq. ratio | Prime factors | Interval name | TET | Limit | M | S | 
|---|
| 0.00 | C[2] | 1 : 1 | 1 : 1 | playⓘ Unison,[3] monophony,[4] perfect prime/first,[3] tonic,[5] or fundamental | 1, 12 | 3 | M |  | 
| 0.03  |  | 65537 : 65536 | 65537 : 216 | playⓘ Sixty-five-thousand-five-hundred-thirty-seventh harmonic |  | 65537 |  | S | 
| 0.40 | C  ♯− | 4375 : 4374 | 54×7 : 2×37 | playⓘ Ragisma[3][6] |  | 7 |  | S | 
| 0.72 | E      + | 2401 : 2400 | 74 : 25×3×52 | playⓘ Breedsma[3][6] |  | 7 |  | S | 
| 1.00  |  | 21/1200 | 21/1200 | playⓘ Cent[7] | 1200 |  |  |  | 
| 1.20  |  | 21/1000 | 21/1000 | playⓘ Millioctave | 1000 |  |  |  | 
| 1.95  | B♯++ | 32805 : 32768 | 38×5 : 215 | playⓘ Schisma[3][5] |  | 5 |  |  | 
| 1.96  |  | 3:2÷(27/12) | 3 : 219/12 | Grad, Werckmeister[8] |  |  |  |  | 
| 3.99  |  | 101/1000 | 21/1000×51/1000 | playⓘ Savart or eptaméride | 301.03 |  |  |  | 
| 7.71  | B  ♯ | 225 : 224 | 32×52 : 25×7 | playⓘ Septimal kleisma,[3][6] marvel comma |  | 7 |  | S | 
| 8.11  | B  − | 15625 : 15552 | 56 : 26×35 | playⓘ Kleisma or semicomma majeur[3][6] |  | 5 |  |  | 
| 10.06  | A   ++ | 2109375 : 2097152 | 33×57 : 221 | playⓘ Semicomma,[3][6] Fokker's comma[3] |  | 5 |  |  | 
| 10.85  | C  | 160 : 159 | 25×5 : 3×53 | playⓘ Difference between 5:3 & 53:32 |  | 53 |  | S | 
| 11.98 | C  | 145 : 144 | 5×29 : 24×32 | playⓘ Difference between 29:16 & 9:5 |  | 29 |  | S | 
| 12.50  |  | 21/96 | 21/96 | playⓘ Sixteenth tone | 96 |  |  |  | 
| 13.07 | B    − | 1728 : 1715 | 26×33 : 5×73 | playⓘ Orwell comma[3][9] |  | 7 |  |  | 
| 13.47 | C  | 129 : 128 | 3×43 : 27 | playⓘ Hundred-twenty-ninth harmonic |  | 43 |  | S | 
| 13.79  | D   | 126 : 125 | 2×32×7 : 53 | playⓘ Small septimal semicomma,[6] small septimal comma,[3] starling comma |  | 7 |  | S | 
| 14.37  | C♭↑↑− | 121 : 120 | 112 : 23×3×5 | playⓘ Undecimal seconds comma[3] |  | 11 |  | S | 
| 16.67  | C↑[a] | 21/72 | 21/72 | playⓘ 1 step in 72 equal temperament | 72 |  |  |  | 
| 18.13  | C  | 96 : 95 | 25×3 : 5×19 | playⓘ Difference between 19:16 & 6:5 |  | 19 |  | S | 
| 19.55  | D  --[2] | 2048 : 2025 | 211 : 34×52 | playⓘ Diaschisma,[3][6] minor comma |  | 5 |  |  | 
| 21.51  | C+[2] | 81 : 80 | 34 : 24×5 | playⓘ Syntonic comma,[3][5][6] major comma, komma, chromatic diesis, or comma of Didymus[3][6][10][11] |  | 5 |  | S | 
| 22.64  |  | 21/53 | 21/53 | playⓘ Holdrian comma, Holder's comma, 1 step in 53 equal temperament | 53 |  |  |  | 
| 23.46  | B♯+++ | 531441 : 524288 | 312 : 219 | playⓘ Pythagorean comma,[3][5][6][10][11] ditonic comma, Pythagorean augmented seventh[3][6] |  | 3 |  |  | 
| 25.00  |  | 21/48 | 21/48 | playⓘ Eighth tone | 48 |  |  |  | 
| 26.84  | C  | 65 : 64 | 5×13 : 26 | playⓘ Sixty-fifth harmonic,[5] 13th-partial chroma[3] |  | 13 |  | S | 
| 27.26  | C  − | 64 : 63 | 26 : 32×7 | playⓘ Septimal comma,[3][6][11] Archytas' comma,[3] 63rd subharmonic |  | 7 |  | S | 
| 29.27 |  | 21/41 | 21/41 | playⓘ 1 step in 41 equal temperament | 41 |  |  |  | 
| 31.19  | D  ♭↓ | 56 : 55 | 23×7 : 5×11 | playⓘ  Undecimal diesis,[3] Ptolemy's enharmonic:[5] difference between (11 : 8) and (7 : 5) tritone |  | 11 |  | S | 
| 33.33 | C  /D♭   [a] | 21/36 | 21/36 | playⓘ Sixth tone | 36, 72 |  |  |  | 
| 34.28  | C  | 51 : 50 | 3×17 : 2×52 | playⓘ Difference between 17:16 & 25:24 |  | 17 |  | S | 
| 34.98  | B   ♯- | 50 : 49 | 2×52 : 72 | playⓘ Septimal sixth tone or jubilisma, Erlich's decatonic comma or tritonic diesis[3][6] |  | 7 |  | S | 
| 35.70  | D   ♭ | 49 : 48 | 72 : 24×3 | playⓘ Septimal diesis, slendro diesis or septimal 1/6-tone[3] |  | 7 |  | S | 
| 38.05  | C  | 46 : 45 | 2×23 : 32×5 | playⓘ Inferior quarter tone,[5] difference between 23:16 & 45:32 |  | 23 |  | S | 
| 38.71  |  | 21/31 | 21/31 | playⓘ 1 step in 31 equal temperament or Normal Diesis | 31 |  |  |  | 
| 38.91  | C↓♯+ | 45 : 44 | 32×5 : 4×11 | playⓘ Undecimal diesis or undecimal fifth tone |  | 11 |  | S | 
| 40.00  |  | 21/30 | 21/30 | playⓘ Fifth tone | 30 |  |  |  | 
| 41.06  | D  − | 128 : 125 | 27 : 53 | playⓘ Enharmonic diesis or 5-limit limma, minor diesis,[6] diminished second,[5][6] minor diesis or diesis,[3] 125th subharmonic |  | 5 |  |  | 
| 41.72  | D   ♭ | 42 : 41 | 2×3×7 : 41 | playⓘ Lesser 41-limit fifth tone |  | 41 |  | S | 
| 42.75  | C  | 41 : 40 | 41 : 23×5 | playⓘ Greater 41-limit fifth tone |  | 41 |  | S | 
| 43.83  | C  ♯ | 40 : 39 | 23×5 : 3×13 | playⓘ Tridecimal fifth tone |  | 13 |  | S | 
| 44.97  | C   | 39 : 38 | 3×13 : 2×19 | playⓘ Superior quarter-tone,[5] novendecimal fifth tone |  | 19 |  | S | 
| 46.17  | D    - | 38 : 37 | 2×19 : 37 | playⓘ Lesser 37-limit quarter tone |  | 37 |  | S | 
| 47.43  | C  ♯ | 37 : 36 | 37 : 22×32 | playⓘ Greater 37-limit quarter tone |  | 37 |  | S | 
| 48.77  | C  | 36 : 35 | 22×32 : 5×7 | playⓘ Septimal quarter tone, septimal diesis,[3][6] septimal chroma,[2] superior quarter tone[5] |  | 7 |  | S | 
| 49.98  |  | 246 : 239 | 3×41 : 239 | playⓘ Just quarter tone[11] |  | 239 |  |  | 
| 50.00  | C  /D  | 21/24 | 21/24 | playⓘ Equal-tempered quarter tone | 24 |  |  |  | 
| 50.18  | D   ♭ | 35 : 34 | 5×7 : 2×17 | playⓘ ET quarter-tone approximation,[5] lesser 17-limit quarter tone |  | 17 |  | S | 
| 50.72  | B  ♯++ | 59049 : 57344 | 310 : 213×7 | playⓘ Harrison's comma (10 P5s – 1 H7)[3] |  | 7 |  |  | 
| 51.68  | C  ↓♯ | 34 : 33 | 2×17 : 3×11 | playⓘ Greater 17-limit quarter tone |  | 17 |  | S | 
| 53.27  | C↑ | 33 : 32 | 3×11 : 25 | playⓘ Thirty-third harmonic,[5] undecimal comma, undecimal quarter tone |  | 11 |  | S | 
| 54.96  | D  ♭- | 32 : 31 | 25 : 31 | playⓘ Inferior quarter-tone,[5] thirty-first subharmonic |  | 31 |  | S | 
| 56.55  | B   ♯+ | 529 : 512 | 232 : 29 | playⓘ Five-hundred-twenty-ninth harmonic |  | 23 |  |  | 
| 56.77  | C  | 31 : 30 | 31 : 2×3×5 | playⓘ Greater quarter-tone,[5] difference between 31:16 & 15:8 |  | 31 |  | S | 
| 58.69  | C  ♯ | 30 : 29 | 2×3×5 : 29 | playⓘ Lesser 29-limit quarter tone |  | 29 |  | S | 
| 60.75  | C   | 29 : 28 | 29 : 22×7 | playⓘ Greater 29-limit quarter tone |  | 29 |  | S | 
| 62.96  | D  ♭- | 28 : 27 | 22×7 : 33 | playⓘ Septimal minor second, small minor second, inferior quarter tone[5] |  | 7 |  | S | 
| 63.81  |  | (3 : 2)1/11 | 31/11 : 21/11 | playⓘ Beta scale step | 18.80 |  |  |  | 
| 65.34  | C  ♯+ | 27 : 26 | 33 : 2×13 | playⓘ Chromatic diesis,[12] tridecimal comma[3] |  | 13 |  | S | 
| 66.34  | D   ♭ | 133 : 128 | 7×19 : 27 | playⓘ One-hundred-thirty-third harmonic |  | 19 |  |  | 
| 66.67  | C  ↑/C♯  [a] | 21/18 | 21/18 | playⓘ Third tone | 18, 36, 72 |  |  |  | 
| 67.90  | D   - | 26 : 25 | 2×13 : 52 | playⓘ Tridecimal third tone, third tone[5] |  | 13 |  | S | 
| 70.67  | C♯[2] | 25 : 24 | 52 : 23×3 | playⓘ Just chromatic semitone or minor chroma,[3] lesser chromatic semitone, small (just) semitone[11] or minor second,[4] minor chromatic semitone,[13] or minor semitone,[5] 2⁄7-comma meantone chromatic semitone, augmented unison |  | 5 |  | S | 
| 73.68  | D  ♭- | 24 : 23 | 23×3 : 23 | playⓘ Lesser 23-limit semitone |  | 23 |  | S | 
| 75.00  |  | 21/16 | 23/48 | playⓘ 1 step in 16 equal temperament, 3 steps in 48 | 16, 48 |  |  |  | 
| 76.96  | C  ↓♯+ | 23 : 22 | 23 : 2×11 | playⓘ Greater 23-limit semitone |  | 23 |  | S | 
| 78.00  |  | (3 : 2)1/9 | 31/9 : 21/9 | playⓘ Alpha scale step | 15.39 |  |  |  | 
| 79.31  |  | 67 : 64 | 67 : 26 | playⓘ Sixty-seventh harmonic[5] |  | 67 |  |  | 
| 80.54  | C↑  - | 22 : 21 | 2×11 : 3×7 | playⓘ Hard semitone,[5] two-fifth tone small semitone |  | 11 |  | S | 
| 84.47  | D  ♭ | 21 : 20 | 3×7 : 22×5 | playⓘ Septimal chromatic semitone, minor semitone[3] |  | 7 |  | S | 
| 88.80  | C  ♯ | 20 : 19 | 22×5 : 19 | playⓘ Novendecimal augmented unison |  | 19 |  | S | 
| 90.22  | D♭−−[2] | 256 : 243 | 28 : 35 | playⓘ Pythagorean minor second or limma,[3][6][11] Pythagorean diatonic semitone, Low Semitone[14] |  | 3 |  |  | 
| 92.18  | C♯+[2] | 135 : 128 | 33×5 : 27 | playⓘ Greater chromatic semitone, chromatic semitone, semitone medius, major chroma or major limma,[3] small limma,[11] major chromatic semitone,[13] limma ascendant[5] |  | 5 |  |  | 
| 93.60  | D  ♭- | 19 : 18 | 19 : 2×32 | Novendecimal minor secondplayⓘ |  | 19 |  | S | 
| 97.36  | D↓↓ | 128 : 121 | 27 : 112 | playⓘ 121st subharmonic,[5][6] undecimal minor second |  | 11 |  |  | 
| 98.95  | D  ♭ | 18 : 17 | 2×32 : 17 | playⓘ Just minor semitone, Arabic lute index finger[3] |  | 17 |  | S | 
| 100.00  | C♯/D♭ | 21/12 | 21/12 | playⓘ Equal-tempered minor second or semitone | 12 |  | M |  | 
| 104.96  | C  ♯[2] | 17 : 16 | 17 : 24 | playⓘ Minor diatonic semitone, just major semitone, overtone semitone,[5] 17th harmonic,[3] limma[citation needed] |  | 17 |  | S | 
| 111.45  |  | 25√5 | (5 : 1)1/25 | playⓘ Studie II interval (compound just major third, 5:1, divided into 25 equal parts) | 10.77 |  |  |  | 
| 111.73  | D♭-[2] | 16 : 15 | 24 : 3×5 | playⓘ Just minor second,[15] just diatonic semitone, large just semitone or major second,[4] major semitone,[5] limma, minor diatonic semitone,[3] diatonic second[16] semitone,[14] diatonic semitone,[11] 1⁄6-comma meantone minor second |  | 5 |  | S | 
| 113.69  | C♯++ | 2187 : 2048 | 37 : 211 | playⓘ Apotome[3][11] or Pythagorean major semitone,[6] Pythagorean augmented unison, Pythagorean chromatic semitone, or Pythagorean apotome |  | 3 |  |  | 
| 116.72  |  | (18 : 5)1/19 | 21/19×32/19 : 51/19 | playⓘ Secor | 10.28 |  |  |  | 
| 119.44  | C  ♯ | 15 : 14 | 3×5 : 2×7 | playⓘ Septimal diatonic semitone, major diatonic semitone,[3] Cowell semitone[5] |  | 7 |  | S | 
| 125.00  |  | 25/48 | 25/48 | playⓘ 5 steps in 48 equal temperament | 48 |  |  |  | 
| 128.30  | D   | 14 : 13 | 2×7 : 13 | playⓘ Lesser tridecimal 2/3-tone[17] |  | 13 |  | S | 
| 130.23  | C  ♯+ | 69 : 64 | 3×23 : 26 | playⓘ Sixty-ninth harmonic[5] |  | 23 |  |  | 
| 133.24  | D♭ | 27 : 25 | 33 : 52 | playⓘ Semitone maximus, minor second, large limma or Bohlen-Pierce small semitone,[3] high semitone,[14] alternate Renaissance half-step,[5] large limma, acute minor second[citation needed] |  | 5 |  |  | 
| 133.33  | C♯  /D♭  [a] | 21/9 | 22/18 | playⓘ Two-third tone | 9, 18, 36, 72 |  |  |  | 
| 138.57  | D  ♭- | 13 : 12 | 13 : 22×3 | playⓘ Greater tridecimal 2/3-tone,[17] Three-quarter tone[5] |  | 13 |  | S | 
| 150.00  | C  /D  | 23/24 | 21/8 | playⓘ Equal-tempered neutral second | 8, 24 |  |  |  | 
| 150.64  | D↓[2] | 12 : 11 | 22×3 : 11 | playⓘ 3⁄4 tone or Undecimal neutral second,[3][5] trumpet three-quarter tone,[11] middle finger [between frets][14] |  | 11 |  | S | 
| 155.14  | D  | 35 : 32 | 5×7 : 25 | playⓘ Thirty-fifth harmonic[5] |  | 7 |  |  | 
| 160.90  | D−− | 800 : 729 | 25×52 : 36 | playⓘ Grave whole tone,[3] neutral second, grave major second[citation needed] |  | 5 |  |  | 
| 165.00  | D↑♭−[2] | 11 : 10 | 11 : 2×5 | playⓘ Greater undecimal minor/major/neutral second, 4/5-tone[6] or Ptolemy's second[3] |  | 11 |  | S | 
| 171.43  |  | 21/7 | 21/7 | playⓘ 1 step in 7 equal temperament | 7 |  |  |  | 
| 175.00  |  | 27/48 | 27/48 | playⓘ 7 steps in 48 equal temperament | 48 |  |  |  | 
| 179.70  |  | 71 : 64 | 71 : 26 | playⓘ Seventy-first harmonic[5] |  | 71 |  |  | 
| 180.45  | E  −−− | 65536 : 59049 | 216 : 310 | playⓘ Pythagorean diminished third,[3][6] Pythagorean minor tone |  | 3 |  |  | 
| 182.40  | D−[2] | 10 : 9 | 2×5 : 32 | playⓘ Small just whole tone or major second,[4] minor whole tone,[3][5] lesser whole tone,[16] minor tone,[14] minor second,[11] half-comma meantone major second |  | 5 |  | S | 
| 200.00  | D | 22/12 | 21/6 | playⓘ Equal-tempered major second | 6, 12 |  | M |  | 
| 203.91  | D[2] | 9 : 8 | 32 : 23 | playⓘ Pythagorean major second, Large just whole tone or major second[11] (sesquioctavan),[4] tonus, major whole tone,[3][5] greater whole tone,[16] major tone[14] |  | 3 |  | S | 
| 215.89  | D  | 145 : 128 | 5×29 : 27 | playⓘ Hundred-forty-fifth harmonic |  | 29 |  |  | 
| 223.46  | E  −[2] | 256 : 225 | 28 : 32×52 | playⓘ Just diminished third,[16] 225th subharmonic |  | 5 |  |  | 
| 225.00  |  | 23/16 | 29/48 | playⓘ 9 steps in 48 equal temperament | 16, 48 |  |  |  | 
| 227.79  |  | 73 : 64 | 73 : 26 | playⓘ Seventy-third harmonic[5] |  | 73 |  |  | 
| 231.17  | D  −[2] | 8 : 7 | 23 : 7 | playⓘ Septimal major second,[4] septimal whole tone[3][5] |  | 7 |  | S | 
| 240.00  |  | 21/5 | 21/5 | playⓘ 1 step in 5 equal temperament | 5 |  |  |  | 
| 247.74  | D  ♯ | 15 : 13 | 3×5 : 13 | playⓘ Tridecimal 5⁄4 tone[3] |  | 13 |  |  | 
| 250.00  | D  /E  | 25/24 | 25/24 | playⓘ 5 steps in 24 equal temperament | 24 |  |  |  | 
| 251.34  | D  ♯ | 37 : 32 | 37 : 25 | playⓘ Thirty-seventh harmonic[5] |  | 37 |  |  | 
| 253.08  | D♯− | 125 : 108 | 53 : 22×33 | playⓘ Semi-augmented whole tone,[3] semi-augmented second[citation needed] |  | 5 |  |  | 
| 262.37  | E↓♭ | 64 : 55 | 26 : 5×11 | playⓘ 55th subharmonic[5][6] |  | 11 |  |  | 
| 266.87  | E  ♭[2] | 7 : 6 | 7 : 2×3 | playⓘ Septimal minor third[3][4][11] or Sub minor third[14] |  | 7 |  | S | 
| 268.80  | D   | 299 : 256 | 13×23 : 28 | playⓘ Two-hundred-ninety-ninth harmonic |  | 23 |  |  | 
| 274.58  | D♯[2] | 75 : 64 | 3×52 : 26 | playⓘ Just augmented second,[16] Augmented tone,[14] augmented second[5][13] |  | 5 |  |  | 
| 275.00  |  | 211/48 | 211/48 | playⓘ 11 steps in 48 equal temperament | 48 |  |  |  | 
| 289.21  | E  ↓♭ | 13 : 11 | 13 : 11 | playⓘ Tridecimal minor third[3] |  | 13 |  |  | 
| 294.13  | E♭−[2] | 32 : 27 | 25 : 33 | playⓘ Pythagorean minor third[3][5][6][14][16] semiditone, or 27th subharmonic |  | 3 |  |  | 
| 297.51  | E  ♭[2] | 19 : 16 | 19 : 24 | playⓘ 19th harmonic,[3] 19-limit minor third, overtone minor third[5] |  | 19 |  |  | 
| 300.00  | D♯/E♭ | 23/12 | 21/4 | playⓘ Equal-tempered minor third | 4, 12 |  | M |  | 
| 301.85  | D  ♯- | 25 : 21[5] | 52 : 3×7 | playⓘ Quasi-equal-tempered minor third, 2nd 7-limit minor third, Bohlen-Pierce second[3][6] |  | 7 |  |  | 
| 310.26  |  | 6:5÷(81:80)1/4 | 22 : 53/4 | playⓘ Quarter-comma meantone minor third |  |  | M |  | 
| 311.98  |  | (3 : 2)4/9 | 34/9 : 24/9 | playⓘ Alpha scale minor third | 15.39 |  |  |  | 
| 315.64  | E♭[2] | 6 : 5 | 2×3 : 5 | playⓘ Just minor third,[3][4][5][11][16] minor third,[14] 1⁄3-comma meantone minor third |  | 5 | M | S | 
| 317.60  | D♯++ | 19683 : 16384 | 39 : 214 | playⓘ Pythagorean augmented second[3][6] |  | 3 |  |  | 
| 320.14  | E  ♭↑ | 77 : 64 | 7×11 : 26 | playⓘ Seventy-seventh harmonic[5] |  | 11 |  |  | 
| 325.00  |  | 213/48 | 213/48 | playⓘ 13 steps in 48 equal temperament | 48 |  |  |  | 
| 336.13  | D   ♯- | 17 : 14 | 17 : 2×7 | playⓘ Superminor third[18] |  | 17 |  |  | 
| 337.15  | E♭+ | 243 : 200 | 35 : 23×52 | playⓘ Acute minor third[3] |  | 5 |  |  | 
| 342.48  | E  ♭ | 39 : 32 | 3×13 : 25 | playⓘ Thirty-ninth harmonic[5] |  | 13 |  |  | 
| 342.86  |  | 22/7 | 22/7 | playⓘ 2 steps in 7 equal temperament | 7 |  |  |  | 
| 342.91  | E  ♭- | 128 : 105 | 27 : 3×5×7 | playⓘ 105th subharmonic,[5] septimal neutral third[6] |  | 7 |  |  | 
| 347.41  | E↑♭−[2] | 11 : 9 | 11 : 32 | playⓘ Undecimal neutral third[3][5] |  | 11 |  |  | 
| 350.00  | D  /E  | 27/24 | 27/24 | playⓘ Equal-tempered neutral third | 24 |  |  |  | 
| 354.55  | E↓+ | 27 : 22 | 33 : 2×11 | playⓘ Zalzal's wosta[6] 12:11 X 9:8[14] |  | 11 |  |  | 
| 359.47  | E  [2] | 16 : 13 | 24 : 13 | playⓘ Tridecimal neutral third[3] |  | 13 |  |  | 
| 364.54  |  | 79 : 64 | 79 : 26 | playⓘ Seventy-ninth harmonic[5] |  | 79 |  |  | 
| 364.81  | E− | 100 : 81 | 22×52 : 34 | playⓘ Grave major third[3] |  | 5 |  |  | 
| 375.00  |  | 25/16 | 215/48 | playⓘ 15 steps in 48 equal temperament | 16, 48 |  |  |  | 
| 384.36  | F♭−− | 8192 : 6561 | 213 : 38 | playⓘ Pythagorean diminished fourth,[3][6] Pythagorean 'schismatic' third[5] |  | 3 |  |  | 
| 386.31  | E[2] | 5 : 4 | 5 : 22 | playⓘ Just major third,[3][4][5][11][16] major third,[14] quarter-comma meantone major third |  | 5 | M | S | 
| 397.10  | E   + | 161 : 128 | 7×23 : 27 | playⓘ One-hundred-sixty-first harmonic |  | 23 |  |  | 
| 400.00  | E | 24/12 | 21/3 | playⓘ Equal-tempered major third | 3, 12 |  | M |  | 
| 402.47  | E   | 323 : 256 | 17×19 : 28 | playⓘ Three-hundred-twenty-third harmonic |  | 19 |  |  | 
| 407.82  | E+[2] | 81 : 64 | 34 : 26 | playⓘ Pythagorean major third,[3][5][6][14][16] ditone |  | 3 |  |  | 
| 417.51  | F  ↓+[2] | 14 : 11 | 2×7 : 11 | playⓘ Undecimal diminished fourth or major third[3] |  | 11 |  |  | 
| 425.00  |  | 217/48 | 217/48 | playⓘ 17 steps in 48 equal temperament | 48 |  |  |  | 
| 427.37  | F♭[2] | 32 : 25 | 25 : 52 | playⓘ Just diminished fourth,[16] diminished fourth,[5][13] 25th subharmonic |  | 5 |  |  | 
| 429.06  | E  | 41 : 32 | 41 : 25 | playⓘ Forty-first harmonic[5] |  | 41 |  |  | 
| 435.08  | E  [2] | 9 : 7 | 32 : 7 | playⓘ Septimal major third,[3][5] Bohlen-Pierce third,[3] Super major Third[14] |  | 7 |  |  | 
| 444.77  | F↓ | 128 : 99 | 27 : 32×11 | playⓘ 99th subharmonic[5][6] |  | 11 |  |  | 
| 450.00  | E  /F  | 29/24 | 29/24 | playⓘ 9 steps in 24 equal temperament | 8, 24 |  |  |  | 
| 450.05  |  | 83 : 64 | 83 : 26 | playⓘ Eighty-third harmonic[5] |  | 83 |  |  | 
| 454.21  | F♭  | 13 : 10 | 13 : 2×5 | playⓘ Tridecimal major third or diminished fourth |  | 13 |  |  | 
| 456.99  | E♯[2] | 125 : 96 | 53 : 25×3 | playⓘ Just augmented third, augmented third[5] |  | 5 |  |  | 
| 462.35  | E   - | 64 : 49 | 26 : 72 | playⓘ 49th subharmonic[5][6] |  | 7 |  |  | 
| 470.78  | F  +[2] | 21 : 16 | 3×7 : 24 | playⓘ Twenty-first harmonic, narrow fourth,[3] septimal fourth,[5] wide augmented third,[citation needed] H7 on G |  | 7 |  |  | 
| 475.00  |  | 219/48 | 219/48 | playⓘ 19 steps in 48 equal temperament | 48 |  |  |  | 
| 478.49  | E♯+ | 675 : 512 | 33×52 : 29 | playⓘ Six-hundred-seventy-fifth harmonic, wide augmented third[3] |  | 5 |  |  | 
| 480.00  |  | 22/5 | 22/5 | playⓘ 2 steps in 5 equal temperament | 5 |  |  |  | 
| 491.27  | E  ♯ | 85 : 64 | 5×17 : 26 | playⓘ Eighty-fifth harmonic[5] |  | 17 |  |  | 
| 498.04  | F[2] | 4 : 3 | 22 : 3 | playⓘ Perfect fourth,[3][5][16] Pythagorean perfect fourth, Just perfect fourth or diatessaron[4] |  | 3 |  | S | 
| 500.00  | F | 25/12 | 25/12 | playⓘ Equal-tempered perfect fourth | 12 |  | M |  | 
| 501.42  | F  + | 171 : 128 | 32×19 : 27 | playⓘ One-hundred-seventy-first harmonic |  | 19 |  |  | 
| 510.51  |  | (3 : 2)8/11 | 38/11 : 28/11 | playⓘ Beta scale perfect fourth | 18.80 |  |  |  | 
| 511.52  | F  | 43 : 32 | 43 : 25 | playⓘ Forty-third harmonic[5] |  | 43 |  |  | 
| 514.29  |  | 23/7 | 23/7 | playⓘ 3 steps in 7 equal temperament | 7 |  |  |  | 
| 519.55  | F+[2] | 27 : 20 | 33 : 22×5 | playⓘ 5-limit wolf fourth, acute fourth,[3] imperfect fourth[16] |  | 5 |  |  | 
| 521.51  | E♯+++ | 177147 : 131072 | 311 : 217 | playⓘ Pythagorean augmented third[3][6] (F+ (pitch)) |  | 3 |  |  | 
| 525.00  |  | 27/16 | 221/48 | playⓘ 21 steps in 48 equal temperament | 16, 48 |  |  |  | 
| 531.53  | F  + | 87 : 64 | 3×29 : 26 | playⓘ Eighty-seventh harmonic[5] |  | 29 |  |  | 
| 536.95  | F↓♯+ | 15 : 11 | 3×5 : 11 | playⓘ Undecimal augmented fourth[3] |  | 11 |  |  | 
| 550.00  | F  /G  | 211/24 | 211/24 | playⓘ 11 steps in 24 equal temperament | 24 |  |  |  | 
| 551.32  | F↑[2] | 11 : 8 | 11 : 23 | playⓘ eleventh harmonic,[5] undecimal tritone,[5] lesser undecimal tritone, undecimal semi-augmented fourth[3] |  | 11 |  |  | 
| 563.38  | F  ♯+ | 18 : 13 | 2×9 : 13 | playⓘ Tridecimal augmented fourth[3] |  | 13 |  |  | 
| 568.72  | F♯[2] | 25 : 18 | 52 : 2×32 | playⓘ Just augmented fourth[3][5] |  | 5 |  |  | 
| 570.88  |  | 89 : 64 | 89 : 26 | playⓘ Eighty-ninth harmonic[5] |  | 89 |  |  | 
| 575.00  |  | 223/48 | 223/48 | playⓘ 23 steps in 48 equal temperament | 48 |  |  |  | 
| 582.51  | G  ♭[2] | 7 : 5 | 7 : 5 | playⓘ Lesser septimal tritone, septimal tritone[3][4][5] Huygens' tritone or Bohlen-Pierce fourth,[3] septimal fifth,[11] septimal diminished fifth[19] |  | 7 |  |  | 
| 588.27  | G♭−− | 1024 : 729 | 210 : 36 | playⓘ Pythagorean diminished fifth,[3][6] low Pythagorean tritone[5] |  | 3 |  |  | 
| 590.22  | F♯+[2] | 45 : 32 | 32×5 : 25 | playⓘ Just augmented fourth, just tritone,[4][11] tritone,[6] diatonic tritone,[3] 'augmented' or 'false' fourth,[16] high 5-limit tritone,[5] 1⁄6-comma meantone augmented fourth |  | 5 |  |  | 
| 595.03  | G   ♭ | 361 : 256 | 192 : 28 | playⓘ Three-hundred-sixty-first harmonic |  | 19 |  |  | 
| 600.00  | F♯/G♭ | 26/12 | 21/2=√2 | playⓘ Equal-tempered tritone | 2, 12 |  | M |  | 
| 609.35  | G   ♭ | 91 : 64 | 7×13 : 26 | playⓘ Ninety-first harmonic[5] |  | 13 |  |  | 
| 609.78  | G♭−[2] | 64 : 45 | 26 : 32×5 | playⓘ Just tritone,[4] 2nd tritone,[6] 'false' fifth,[16] diminished fifth,[13] low 5-limit tritone,[5] 45th subharmonic |  | 5 |  |  | 
| 611.73  | F♯++ | 729 : 512 | 36 : 29 | playⓘ Pythagorean tritone,[3][6] Pythagorean augmented fourth, high Pythagorean tritone[5] |  | 3 |  |  | 
| 617.49  | F♯  [2] | 10 : 7 | 2×5 : 7 | playⓘ Greater septimal tritone, septimal tritone,[4][5] Euler's tritone[3] |  | 7 |  |  | 
| 625.00  |  | 225/48 | 225/48 | playⓘ 25 steps in 48 equal temperament | 48 |  |  |  | 
| 628.27  | F  ♯+ | 23 : 16 | 23 : 24 | playⓘ Twenty-third harmonic,[5] classic diminished fifth[citation needed] |  | 23 |  |  | 
| 631.28  | G♭[2] | 36 : 25 | 22×32 : 52 | playⓘ Just diminished fifth[5] |  | 5 |  |  | 
| 646.99  | F  ♯+ | 93 : 64 | 3×31 : 26 | playⓘ Ninety-third harmonic[5] |  | 31 |  |  | 
| 648.68  | G↓[2] | 16 : 11 | 24 : 11 | playⓘ ` undecimal semi-diminished fifth[3] |  | 11 |  |  | 
| 650.00  | F  /G  | 213/24 | 213/24 | playⓘ 13 steps in 24 equal temperament | 24 |  |  |  | 
| 665.51  | G  | 47 : 32 | 47 : 25 | playⓘ Forty-seventh harmonic[5] |  | 47 |  |  | 
| 675.00  |  | 29/16 | 227/48 | playⓘ 27 steps in 48 equal temperament | 16, 48 |  |  |  | 
| 678.49  | A  −−− | 262144 : 177147 | 218 : 311 | playⓘ Pythagorean diminished sixth[3][6] |  | 3 |  |  | 
| 680.45  | G− | 40 : 27 | 23×5 : 33 | playⓘ 5-limit wolf fifth,[5] or diminished sixth, grave fifth,[3][6][11] imperfect fifth,[16] |  | 5 |  |  | 
| 683.83  | G  | 95 : 64 | 5×19 : 26 | playⓘ Ninety-fifth harmonic[5] |  | 19 |  |  | 
| 684.82  | E     ++ | 12167 : 8192 | 233 : 213 | playⓘ 12167th harmonic |  | 23 |  |  | 
| 685.71  |  | 24/7 : 1 |  | playⓘ 4 steps in 7 equal temperament | 7 |  |  |  | 
| 691.20  |  | 3:2÷(81:80)1/2 | 2×51/2 : 3 | playⓘ Half-comma meantone perfect fifth |  |  | M |  | 
| 694.79  |  | 3:2÷(81:80)1/3 | 21/3×51/3 : 31/3 | playⓘ 1⁄3-comma meantone perfect fifth |  |  | M |  | 
| 695.81  |  | 3:2÷(81:80)2/7 | 21/7×52/7 : 31/7 | playⓘ 2⁄7-comma meantone perfect fifth |  |  | M |  | 
| 696.58  |  | 3:2÷(81:80)1/4 | 51/4 | playⓘ Quarter-comma meantone perfect fifth |  |  | M |  | 
| 697.65  |  | 3:2÷(81:80)1/5 | 31/5×51/5 : 21/5 | playⓘ 1⁄5-comma meantone perfect fifth |  |  | M |  | 
| 698.37  |  | 3:2÷(81:80)1/6 | 31/3×51/6 : 21/3 | playⓘ 1⁄6-comma meantone perfect fifth |  |  | M |  | 
| 700.00  | G | 27/12 | 27/12 | playⓘ Equal-tempered perfect fifth | 12 |  | M |  | 
| 701.89  |  | 231/53 | 231/53 | playⓘ 53-TET perfect fifth | 53 |  |  |  | 
| 701.96  | G[2] | 3 : 2 | 3 : 2 | playⓘ Perfect fifth,[3][5][16] Pythagorean perfect fifth, Just perfect fifth or diapente,[4] fifth,[14] Just fifth[11] |  | 3 |  | S | 
| 702.44  |  | 224/41 | 224/41 | playⓘ 41-TET perfect fifth | 41 |  |  |  | 
| 703.45  |  | 217/29 | 217/29 | playⓘ 29-TET perfect fifth | 29 |  |  |  | 
| 719.90  |  | 97 : 64 | 97 : 26 | playⓘ Ninety-seventh harmonic[5] |  | 97 |  |  | 
| 720.00  |  | 23/5 : 1 |  | playⓘ 3 steps in 5 equal temperament | 5 |  |  |  | 
| 721.51  | A  − | 1024 : 675 | 210 : 33×52 | playⓘ Narrow diminished sixth[3] |  | 5 |  |  | 
| 725.00  |  | 229/48 | 229/48 | playⓘ 29 steps in 48 equal temperament | 48 |  |  |  | 
| 729.22  | G  - | 32 : 21 | 24 : 3×7 | playⓘ 21st subharmonic,[5][6] septimal diminished sixth |  | 7 |  |  | 
| 733.23  | F    + | 391 : 256 | 17×23 : 28 | playⓘ Three-hundred-ninety-first harmonic |  | 23 |  |  | 
| 737.65  | A   ♭+ | 49 : 32 | 7×7 : 25 | playⓘ Forty-ninth harmonic[5] |  | 7 |  |  | 
| 743.01  | A  | 192 : 125 | 26×3 : 53 | playⓘ Classic diminished sixth[3] |  | 5 |  |  | 
| 750.00  | G  /A  | 215/24 | 215/24 | playⓘ 15 steps in 24 equal temperament | 8, 24 |  |  |  | 
| 755.23  | G↑ | 99 : 64 | 32×11 : 26 | playⓘ Ninety-ninth harmonic[5] |  | 11 |  |  | 
| 764.92  | A  ♭[2] | 14 : 9 | 2×7 : 32 | playⓘ Septimal minor sixth[3][5] |  | 7 |  |  | 
| 772.63  | G♯ | 25 : 16 | 52 : 24 | playⓘ Just augmented fifth[5][16] |  | 5 |  |  | 
| 775.00  |  | 231/48 | 231/48 | playⓘ 31 steps in 48 equal temperament | 48 |  |  |  | 
| 781.79  |  | π : 2 |  | playⓘ Wallis product |  |  |  |  | 
| 782.49  | G  ↑-[2] | 11 : 7 | 11 : 7 | playⓘ Undecimal minor sixth,[5] undecimal augmented fifth,[3] Lucas numbers |  | 11 |  |  | 
| 789.85  |  | 101 : 64 | 101 : 26 | playⓘ Hundred-first harmonic[5] |  | 101 |  |  | 
| 792.18  | A♭−[2] | 128 : 81 | 27 : 34 | playⓘ Pythagorean minor sixth,[3][5][6] 81st subharmonic |  | 3 |  |  | 
| 798.40  | A   ♭+ | 203 : 128 | 7×29 : 27 | playⓘ Two-hundred-third harmonic |  | 29 |  |  | 
| 800.00  | G♯/A♭ | 28/12 | 22/3 | playⓘ Equal-tempered minor sixth | 3, 12 |  | M |  | 
| 806.91  | G  ♯ | 51 : 32 | 3×17 : 25 | playⓘ Fifty-first harmonic[5] |  | 17 |  |  | 
| 813.69  | A♭[2] | 8 : 5 | 23 : 5 | playⓘ Just minor sixth[3][4][11][16] |  | 5 |  |  | 
| 815.64  | G♯++ | 6561 : 4096 | 38 : 212 | playⓘ Pythagorean augmented fifth,[3][6] Pythagorean 'schismatic' sixth[5] |  | 3 |  |  | 
| 823.80  |  | 103 : 64 | 103 : 26 | playⓘ Hundred-third harmonic[5] |  | 103 |  |  | 
| 825.00  |  | 211/16 | 233/48 | playⓘ 33 steps in 48 equal temperament | 16, 48 |  |  |  | 
| 832.18  | G  ♯+ | 207 : 128 | 32×23 : 27 | playⓘ Two-hundred-seventh harmonic |  | 23 |  |  | 
| 833.09  |  | (51/2+1)/2 | φ : 1 | playⓘ Golden ratio (833 cents scale) |  |  |  |  | 
| 835.19  | A♭+ | 81 : 50 | 34 : 2×52 | playⓘ Acute minor sixth[3] |  | 5 |  |  | 
| 840.53  | A  ♭[2] | 13 : 8 | 13 : 23 | playⓘ Tridecimal neutral sixth,[3]Fibonacci numbers, overtone sixth,[5] thirteenth harmonic |  | 13 |  |  | 
| 848.83  | A  ♭↑ | 209 : 128 | 11×19 : 27 | playⓘ Two-hundred-ninth harmonic |  | 19 |  |  | 
| 850.00  | G  /A  | 217/24 | 217/24 | playⓘ Equal-tempered neutral sixth | 24 |  |  |  | 
| 852.59  | A↓+[2] | 18 : 11 | 2×32 : 11 | playⓘ Undecimal neutral sixth,[3][5] Zalzal's neutral sixth |  | 11 |  |  | 
| 857.09  | A  + | 105 : 64 | 3×5×7 : 26 | playⓘ Hundred-fifth harmonic[5] |  | 7 |  |  | 
| 857.14  |  | 25/7 | 25/7 | playⓘ 5 steps in 7 equal temperament | 7 |  |  |  | 
| 862.85  | A− | 400 : 243 | 24×52 : 35 | playⓘ Grave major sixth[3] |  | 5 |  |  | 
| 873.50  | A  | 53 : 32 | 53 : 25 | playⓘ Fifty-third harmonic[5] |  | 53 |  |  | 
| 875.00  |  | 235/48 | 235/48 | playⓘ 35 steps in 48 equal temperament | 48 |  |  |  | 
| 879.86  | A↓  | 128 : 77 | 27 : 7×11 | playⓘ 77th subharmonic[5][6] |  | 11 |  |  | 
| 882.40  | B  −−− | 32768 : 19683 | 215 : 39 | playⓘ Pythagorean diminished seventh[3][6] |  | 3 |  |  | 
| 884.36  | A[2] | 5 : 3 | 5 : 3 | playⓘ Just major sixth,[3][4][5][11][16] Bohlen-Pierce sixth,[3] 1⁄3-comma meantone major sixth |  | 5 | M |  | 
| 889.76  |  | 107 : 64 | 107 : 26 | playⓘ Hundred-seventh harmonic[5] |  | 107 |  |  | 
| 892.54  | B     | 6859 : 4096 | 193 : 212 | playⓘ 6859th harmonic |  | 19 |  |  | 
| 900.00  | A | 29/12 | 23/4 | playⓘ Equal-tempered major sixth | 4, 12 |  | M |  | 
| 902.49  | A  | 32 : 19 | 25 : 19 | playⓘ 19th subharmonic[5][6] |  | 19 |  |  | 
| 905.87  | A+[2] | 27 : 16 | 33 : 24 | playⓘ Pythagorean major sixth[3][5][11][16] |  | 3 |  |  | 
| 921.82  |  | 109 : 64 | 109 : 26 | playⓘ Hundred-ninth harmonic[5] |  | 109 |  |  | 
| 925.00  |  | 237/48 | 237/48 | playⓘ 37 steps in 48 equal temperament | 48 |  |  |  | 
| 925.42  | B  −[2] | 128 : 75 | 27 : 3×52 | playⓘ Just diminished seventh,[16] diminished seventh,[5][13] 75th subharmonic |  | 5 |  |  | 
| 925.79  | A   + | 437 : 256 | 19×23 : 28 | playⓘ Four-hundred-thirty-seventh harmonic |  | 23 |  |  | 
| 933.13  | A  [2] | 12 : 7 | 22×3 : 7 | playⓘ Septimal major sixth[3][4][5] |  | 7 |  |  | 
| 937.63  | A↑ | 55 : 32 | 5×11 : 25 | playⓘ Fifty-fifth harmonic[5][20] |  | 11 |  |  | 
| 950.00  | A  /B  | 219/24 | 219/24 | playⓘ 19 steps in 24 equal temperament | 24 |  |  |  | 
| 953.30  | A  ♯+ | 111 : 64 | 3×37 : 26 | playⓘ Hundred-eleventh harmonic[5] |  | 37 |  |  | 
| 955.03  | A♯[2] | 125 : 72 | 53 : 23×32 | playⓘ Just augmented sixth[5] |  | 5 |  |  | 
| 957.21  |  | (3 : 2)15/11 | 315/11 : 215/11 | playⓘ 15 steps in Beta scale | 18.80 |  |  |  | 
| 960.00  |  | 24/5 | 24/5 | playⓘ 4 steps in 5 equal temperament | 5 |  |  |  | 
| 968.83  | B  ♭[2] | 7 : 4 | 7 : 22 | playⓘ Septimal minor seventh,[4][5][11] harmonic seventh,[3][11] augmented sixth[citation needed] |  | 7 |  |  | 
| 975.00  |  | 213/16 | 239/48 | playⓘ 39 steps in 48 equal temperament | 16, 48 |  |  |  | 
| 976.54  | A♯+[2] | 225 : 128 | 32×52 : 27 | playⓘ Just augmented sixth[16] |  | 5 |  |  | 
| 984.21  |  | 113 : 64 | 113 : 26 | playⓘ Hundred-thirteenth harmonic[5] |  | 113 |  |  | 
| 996.09 | B♭−[2] | 16 : 9 | 24 : 32 | playⓘ Pythagorean minor seventh,[3] Small just minor seventh,[4] lesser minor seventh,[16] just minor seventh,[11] Pythagorean small minor seventh[5] |  | 3 |  |  | 
| 999.47  | B  ♭ | 57 : 32 | 3×19 : 25 | playⓘ Fifty-seventh harmonic[5] |  | 19 |  |  | 
| 1000.00 | A♯/B♭ | 210/12 | 25/6 | playⓘ Equal-tempered minor seventh | 6, 12 |  | M |  | 
| 1014.59  | A  ♯+ | 115 : 64 | 5×23 : 26 | playⓘ Hundred-fifteenth harmonic[5] |  | 23 |  |  | 
| 1017.60 | B♭[2] | 9 : 5 | 32 : 5 | playⓘ Greater just minor seventh,[16] large just minor seventh,[4][5] Bohlen-Pierce seventh[3] |  | 5 |  |  | 
| 1019.55  | A♯+++ | 59049 : 32768 | 310 : 215 | playⓘ Pythagorean augmented sixth[3][6] |  | 3 |  |  | 
| 1025.00  |  | 241/48 | 241/48 | playⓘ 41 steps in 48 equal temperament | 48 |  |  |  | 
| 1028.57  |  | 26/7 | 26/7 | playⓘ 6 steps in 7 equal temperament | 7 |  |  |  | 
| 1029.58  | B  ♭ | 29 : 16 | 29 : 24 | playⓘ Twenty-ninth harmonic,[5] minor seventh[citation needed] |  | 29 |  |  | 
| 1035.00 | B↓[2] | 20 : 11 | 22×5 : 11 | playⓘ Lesser undecimal neutral seventh, large minor seventh[3] |  | 11 |  |  | 
| 1039.10  | B♭+ | 729 : 400 | 36 : 24×52 | playⓘ Acute minor seventh[3] |  | 5 |  |  | 
| 1044.44  | B  ♭ | 117 : 64 | 32×13 : 26 | playⓘ Hundred-seventeenth harmonic[5] |  | 13 |  |  | 
| 1044.86  | B  ♭- | 64 : 35 | 26 : 5×7 | playⓘ 35th subharmonic,[5] septimal neutral seventh[6] |  | 7 |  |  | 
| 1049.36 | B↑♭−[2] | 11 : 6 | 11 : 2×3 | playⓘ 21⁄4-tone or Undecimal neutral seventh,[3] undecimal 'median' seventh[5] |  | 11 |  |  | 
| 1050.00  | A  /B  | 221/24 | 27/8 | playⓘ Equal-tempered neutral seventh | 8, 24 |  |  |  | 
| 1059.17  |  | 59 : 32 | 59 : 25 | playⓘ Fifty-ninth harmonic[5] |  | 59 |  |  | 
| 1066.76  | B− | 50 : 27 | 2×52 : 33 | playⓘ Grave major seventh[3] |  | 5 |  |  | 
| 1071.70  | B   ♭- | 13 : 7 | 13 : 7 | playⓘ Tridecimal neutral seventh[21] |  | 13 |  |  | 
| 1073.78  | B   | 119 : 64 | 7×17 : 26 | playⓘ Hundred-nineteenth harmonic[5] |  | 17 |  |  | 
| 1075.00  |  | 243/48 | 243/48 | playⓘ 43 steps in 48 equal temperament | 48 |  |  |  | 
| 1086.31  | C′♭−− | 4096 : 2187 | 212 : 37 | playⓘ Pythagorean diminished octave[3][6] |  | 3 |  |  | 
| 1088.27  | B[2] | 15 : 8 | 3×5 : 23 | playⓘ Just major seventh,[3][5][11][16] small just major seventh,[4] 1⁄6-comma meantone major seventh |  | 5 |  |  | 
| 1095.04  | C  ♭ | 32 : 17 | 25 : 17 | playⓘ 17th subharmonic[5][6] |  | 17 |  |  | 
| 1100.00  | B | 211/12 | 211/12 | playⓘ Equal-tempered major seventh | 12 |  | M |  | 
| 1102.64  | B↑↑♭- | 121 : 64 | 112 : 26 | playⓘ Hundred-twenty-first harmonic[5] |  | 11 |  |  | 
| 1107.82  | C′♭− | 256 : 135 | 28 : 33×5 | playⓘ Octave − major chroma,[3] 135th subharmonic, narrow diminished octave[citation needed] |  | 5 |  |  | 
| 1109.78  | B+[2] | 243 : 128 | 35 : 27 | playⓘ Pythagorean major seventh[3][5][6][11] |  | 3 |  |  | 
| 1116.88  |  | 61 : 32 | 61 : 25 | playⓘ Sixty-first harmonic[5] |  | 61 |  |  | 
| 1125.00  |  | 215/16 | 245/48 | playⓘ 45 steps in 48 equal temperament | 16, 48 |  |  |  | 
| 1129.33  | C′♭[2] | 48 : 25 | 24×3 : 52 | playⓘ Classic diminished octave,[3][6] large just major seventh[4] |  | 5 |  |  | 
| 1131.02  | B  | 123 : 64 | 3×41 : 26 | playⓘ Hundred-twenty-third harmonic[5] |  | 41 |  |  | 
| 1137.04  | B  | 27 : 14 | 33 : 2×7 | playⓘ Septimal major seventh[5] |  | 7 |  |  | 
| 1138.04  | C   ♭ | 247 : 128 | 13×19 : 27 | playⓘ Two-hundred-forty-seventh harmonic |  | 19 |  |  | 
| 1145.04  | B  | 31 : 16 | 31 : 24 | playⓘ Thirty-first harmonic,[5] augmented seventh[citation needed] |  | 31 |  |  | 
| 1146.73  | C↓ | 64 : 33 | 26 : 3×11 | playⓘ 33rd subharmonic[6] |  | 11 |  |  | 
| 1150.00  | B  /C  | 223/24 | 223/24 | playⓘ 23 steps in 24 equal temperament | 24 |  |  |  | 
| 1151.23  | C  | 35 : 18 | 5×7 : 2×32 | playⓘ Septimal supermajor seventh, septimal quarter tone inverted |  | 7 |  |  | 
| 1158.94  | B♯[2] | 125 : 64 | 53 : 26 | playⓘ Just augmented seventh,[5] 125th harmonic |  | 5 |  |  | 
| 1172.74  | C  + | 63 : 32 | 32×7 : 25 | playⓘ Sixty-third harmonic[5] |  | 7 |  |  | 
| 1175.00  |  | 247/48 | 247/48 | playⓘ 47 steps in 48 equal temperament | 48 |  |  |  | 
| 1178.49  | C′− | 160 : 81 | 25×5 : 34 | playⓘ Octave − syntonic comma,[3] semi-diminished octave[citation needed] |  | 5 |  |  | 
| 1179.59  | B  ↑ | 253 : 128 | 11×23 : 27 | playⓘ Two-hundred-fifty-third harmonic[5] |  | 23 |  |  | 
| 1186.42  |  | 127 : 64 | 127 : 26 | playⓘ Hundred-twenty-seventh harmonic[5] |  | 127 |  |  | 
| 1200.00  | C′ | 2 : 1 | 2 : 1 | playⓘ Octave,[3][11] perfect eighth or diapason[4] | 1, 12 | 3 | M | S |