Top Qs
Timeline
Chat
Perspective
Kervaire semi-characteristic
Invariant of closed manifolds, in mathematics From Wikipedia, the free encyclopedia
Remove ads
In mathematics, the Kervaire semi-characteristic, introduced by Michel Kervaire (1956), is an invariant of closed manifolds M of dimension taking values in , given by
![]() | This article includes a list of general references, but it lacks sufficient corresponding inline citations. (May 2020) |
where F is a field.
Michael Atiyah and Isadore Singer (1971) showed that the Kervaire semi-characteristic of a differentiable manifold is given by the index of a skew-adjoint elliptic operator.
Assuming M is oriented, the Atiyah vanishing theorem states that if M has two linearly independent vector fields, then .[1]
The difference is the de Rham invariant of .[2]
Remove ads
References
- Atiyah, Michael F.; Singer, Isadore M. (1971). "The Index of Elliptic Operators V". Annals of Mathematics. Second Series. 93 (1): 139–149. doi:10.2307/1970757. JSTOR 1970757.
- Kervaire, Michel (1956). "Courbure intégrale généralisée et homotopie". Mathematische Annalen. 131: 219–252. doi:10.1007/BF01342961. ISSN 0025-5831. MR 0086302.
- Lee, Ronnie (1973). "Semicharacteristic classes". Topology. 12 (2): 183–199. doi:10.1016/0040-9383(73)90006-2. MR 0362367.
Remove ads
Notes
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads