Top Qs
Timeline
Chat
Perspective

Kervaire semi-characteristic

Invariant of closed manifolds, in mathematics From Wikipedia, the free encyclopedia

Remove ads

In mathematics, the Kervaire semi-characteristic, introduced by Michel Kervaire (1956), is an invariant of closed manifolds M of dimension taking values in , given by

where F is a field.

Michael Atiyah and Isadore Singer (1971) showed that the Kervaire semi-characteristic of a differentiable manifold is given by the index of a skew-adjoint elliptic operator.

Assuming M is oriented, the Atiyah vanishing theorem states that if M has two linearly independent vector fields, then .[1]

The difference is the de Rham invariant of .[2]

Remove ads

References

  • Atiyah, Michael F.; Singer, Isadore M. (1971). "The Index of Elliptic Operators V". Annals of Mathematics. Second Series. 93 (1): 139–149. doi:10.2307/1970757. JSTOR 1970757.
  • Kervaire, Michel (1956). "Courbure intégrale généralisée et homotopie". Mathematische Annalen. 131: 219–252. doi:10.1007/BF01342961. ISSN 0025-5831. MR 0086302.
  • Lee, Ronnie (1973). "Semicharacteristic classes". Topology. 12 (2): 183–199. doi:10.1016/0040-9383(73)90006-2. MR 0362367.
Remove ads

Notes

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads