Silverman–Toeplitz theorem

Theorem of summability methods From Wikipedia, the free encyclopedia

In mathematics, the Silverman–Toeplitz theorem, first proved by Otto Toeplitz, is a result in series summability theory characterizing matrix summability methods that are regular. A regular matrix summability method is a linear sequence transformation that preserves the limits of convergent sequences.[1] The linear sequence transformation can be applied to the divergent sequences of partial sums of divergent series to give those series generalized sums.

An infinite matrix with complex-valued entries defines a regular matrix summability method if and only if it satisfies all of the following properties:

An example is Cesàro summation, a matrix summability method with

Formal statement

Summarize
Perspective

Let the aforementioned inifinite matrix of complex elements satisfy the following conditions:

  1. for every fixed .
  2. ;

and be a sequence of complex numbers that converges to . We denote as the weighted sum sequence: .

Then the following results hold:

  1. If , then .
  2. If and , then .[2]

Proof

Proving 1.

For the fixed the complex sequences , and approach zero if and only if the real-values sequences , and approach zero respectively. We also introduce .

Since , for prematurely chosen there exists , so for every we have . Next, for some it's true, that for every and . Therefore, for every

which means, that both sequences and converge zero.[3]

Proving 2.

. Applying the already proven statement yields . Finally,

, which completes the proof.

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.