Cents | Note (from C) | Freq. ratio | Prime factors | Interval name | TET | Limit | M | S |
0.00 | C[2] | 1 : 1 | 1 : 1 | playⓘ Unison,[3] monophony,[4] perfect prime,[3] tonic,[5] or fundamental | 1, 12 | 3 | M | |
0.03 | | 65537 : 65536 | 65537 : 216 | playⓘ Sixty-five-thousand-five-hundred-thirty-seventh harmonic | | 65537 | | S |
0.40 | C ♯− | 4375 : 4374 | 54×7 : 2×37 | playⓘ Ragisma[3][6] | | 7 | | S |
0.72 | E    + | 2401 : 2400 | 74 : 25×3×52 | playⓘ Breedsma[3][6] | | 7 | | S |
1.00 | | 21/1200 | 21/1200 | playⓘ Cent[7] | 1200 | | | |
1.20 | | 21/1000 | 21/1000 | playⓘ Millioctave | 1000 | | | |
1.95 | B♯++ | 32805 : 32768 | 38×5 : 215 | playⓘ Schisma[3][5] | | 5 | | |
1.96 | | 3:2÷(27/12) | 3 : 219/12 | Grad, Werckmeister[8] | | | | |
3.99 | | 101/1000 | 21/1000×51/1000 | playⓘ Savart or eptaméride | 301.03 | | | |
7.71 | B ♯ | 225 : 224 | 32×52 : 25×7 | playⓘ Septimal kleisma,[3][6] marvel comma | | 7 | | S |
8.11 | B − | 15625 : 15552 | 56 : 26×35 | playⓘ Kleisma or semicomma majeur[3][6] | | 5 | | |
10.06 | A ++ | 2109375 : 2097152 | 33×57 : 221 | playⓘ Semicomma,[3][6] Fokker's comma[3] | | 5 | | |
10.85 | C | 160 : 159 | 25×5 : 3×53 | playⓘ Difference between 5:3 & 53:32 | | 53 | | S |
11.98 | C | 145 : 144 | 5×29 : 24×32 | playⓘ Difference between 29:16 & 9:5 | | 29 | | S |
12.50 | | 21/96 | 21/96 | playⓘ Sixteenth tone | 96 | | | |
13.07 | B  − | 1728 : 1715 | 26×33 : 5×73 | playⓘ Orwell comma[3][9] | | 7 | | |
13.47 | C | 129 : 128 | 3×43 : 27 | playⓘ Hundred-twenty-ninth harmonic | | 43 | | S |
13.79 | D  | 126 : 125 | 2×32×7 : 53 | playⓘ Small septimal semicomma,[6] small septimal comma,[3] starling comma | | 7 | | S |
14.37 | C♭↑↑− | 121 : 120 | 112 : 23×3×5 | playⓘ Undecimal seconds comma[3] | | 11 | | S |
16.67 | C↑[a] | 21/72 | 21/72 | playⓘ 1 step in 72 equal temperament | 72 | | | |
18.13 | C | 96 : 95 | 25×3 : 5×19 | playⓘ Difference between 19:16 & 6:5 | | 19 | | S |
19.55 | D --[2] | 2048 : 2025 | 211 : 34×52 | playⓘ Diaschisma,[3][6] minor comma | | 5 | | |
21.51 | C+[2] | 81 : 80 | 34 : 24×5 | playⓘ Syntonic comma,[3][5][6] major comma, komma, chromatic diesis, or comma of Didymus[3][6][10][11] | | 5 | | S |
22.64 | | 21/53 | 21/53 | playⓘ Holdrian comma, Holder's comma, 1 step in 53 equal temperament | 53 | | | |
23.46 | B♯+++ | 531441 : 524288 | 312 : 219 | playⓘ Pythagorean comma,[3][5][6][10][11] ditonic comma[3][6] | | 3 | | |
25.00 | | 21/48 | 21/48 | playⓘ Eighth tone | 48 | | | |
26.84 | C | 65 : 64 | 5×13 : 26 | playⓘ Sixty-fifth harmonic,[5] 13th-partial chroma[3] | | 13 | | S |
27.26 | C − | 64 : 63 | 26 : 32×7 | playⓘ Septimal comma,[3][6][11] Archytas' comma,[3] 63rd subharmonic | | 7 | | S |
29.27 | | 21/41 | 21/41 | playⓘ 1 step in 41 equal temperament | 41 | | | |
31.19 | D ♭↓ | 56 : 55 | 23×7 : 5×11 | playⓘ Undecimal diesis,[3] Ptolemy's enharmonic:[5] difference between (11 : 8) and (7 : 5) tritone | | 11 | | S |
33.33 | C /D♭ [a] | 21/36 | 21/36 | playⓘ Sixth tone | 36, 72 | | | |
34.28 | C | 51 : 50 | 3×17 : 2×52 | playⓘ Difference between 17:16 & 25:24 | | 17 | | S |
34.98 | B ♯- | 50 : 49 | 2×52 : 72 | playⓘ Septimal sixth tone or jubilisma, Erlich's decatonic comma or tritonic diesis[3][6] | | 7 | | S |
35.70 | D ♭ | 49 : 48 | 72 : 24×3 | playⓘ Septimal diesis, slendro diesis or septimal 1/6-tone[3] | | 7 | | S |
38.05 | C | 46 : 45 | 2×23 : 32×5 | playⓘ Inferior quarter tone,[5] difference between 23:16 & 45:32 | | 23 | | S |
38.71 | | 21/31 | 21/31 | playⓘ 1 step in 31 equal temperament or Normal Diesis | 31 | | | |
38.91 | C↓♯+ | 45 : 44 | 32×5 : 4×11 | playⓘ Undecimal diesis or undecimal fifth tone | | 11 | | S |
40.00 | | 21/30 | 21/30 | playⓘ Fifth tone | 30 | | | |
41.06 | D − | 128 : 125 | 27 : 53 | playⓘ Enharmonic diesis or 5-limit limma, minor diesis,[6] diminished second,[5][6] minor diesis or diesis,[3] 125th subharmonic | | 5 | | |
41.72 | D ♭ | 42 : 41 | 2×3×7 : 41 | playⓘ Lesser 41-limit fifth tone | | 41 | | S |
42.75 | C | 41 : 40 | 41 : 23×5 | playⓘ Greater 41-limit fifth tone | | 41 | | S |
43.83 | C ♯ | 40 : 39 | 23×5 : 3×13 | playⓘ Tridecimal fifth tone | | 13 | | S |
44.97 | C  | 39 : 38 | 3×13 : 2×19 | playⓘ Superior quarter-tone,[5] novendecimal fifth tone | | 19 | | S |
46.17 | D  - | 38 : 37 | 2×19 : 37 | playⓘ Lesser 37-limit quarter tone | | 37 | | S |
47.43 | C ♯ | 37 : 36 | 37 : 22×32 | playⓘ Greater 37-limit quarter tone | | 37 | | S |
48.77 | C | 36 : 35 | 22×32 : 5×7 | playⓘ Septimal quarter tone, septimal diesis,[3][6] septimal chroma,[2] superior quarter tone[5] | | 7 | | S |
49.98 | | 246 : 239 | 3×41 : 239 | playⓘ Just quarter tone[11] | | 239 | | |
50.00 | C /D | 21/24 | 21/24 | playⓘ Equal-tempered quarter tone | 24 | | | |
50.18 | D ♭ | 35 : 34 | 5×7 : 2×17 | playⓘ ET quarter-tone approximation,[5] lesser 17-limit quarter tone | | 17 | | S |
50.72 | B ♯++ | 59049 : 57344 | 310 : 213×7 | playⓘ Harrison's comma (10 P5s – 1 H7)[3] | | 7 | | |
51.68 | C ↓♯ | 34 : 33 | 2×17 : 3×11 | playⓘ Greater 17-limit quarter tone | | 17 | | S |
53.27 | C↑ | 33 : 32 | 3×11 : 25 | playⓘ Thirty-third harmonic,[5] undecimal comma, undecimal quarter tone | | 11 | | S |
54.96 | D ♭- | 32 : 31 | 25 : 31 | playⓘ Inferior quarter-tone,[5] thirty-first subharmonic | | 31 | | S |
56.55 | B ♯+ | 529 : 512 | 232 : 29 | playⓘ Five-hundred-twenty-ninth harmonic | | 23 | | |
56.77 | C | 31 : 30 | 31 : 2×3×5 | playⓘ Greater quarter-tone,[5] difference between 31:16 & 15:8 | | 31 | | S |
58.69 | C ♯ | 30 : 29 | 2×3×5 : 29 | playⓘ Lesser 29-limit quarter tone | | 29 | | S |
60.75 | C  | 29 : 28 | 29 : 22×7 | playⓘ Greater 29-limit quarter tone | | 29 | | S |
62.96 | D ♭- | 28 : 27 | 22×7 : 33 | playⓘ Septimal minor second, small minor second, inferior quarter tone[5] | | 7 | | S |
63.81 | | (3 : 2)1/11 | 31/11 : 21/11 | playⓘ Beta scale step | 18.80 | | | |
65.34 | C ♯+ | 27 : 26 | 33 : 2×13 | playⓘ Chromatic diesis,[12] tridecimal comma[3] | | 13 | | S |
66.34 | D ♭ | 133 : 128 | 7×19 : 27 | playⓘ One-hundred-thirty-third harmonic | | 19 | | |
66.67 | C ↑/C♯ [a] | 21/18 | 21/18 | playⓘ Third tone | 18, 36, 72 | | | |
67.90 | D - | 26 : 25 | 2×13 : 52 | playⓘ Tridecimal third tone, third tone[5] | | 13 | | S |
70.67 | C♯[2] | 25 : 24 | 52 : 23×3 | playⓘ Just chromatic semitone or minor chroma,[3] lesser chromatic semitone, small (just) semitone[11] or minor second,[4] minor chromatic semitone,[13] or minor semitone,[5] 2⁄7-comma meantone chromatic semitone, augmented unison | | 5 | | S |
73.68 | D ♭- | 24 : 23 | 23×3 : 23 | playⓘ Lesser 23-limit semitone | | 23 | | S |
75.00 | | 21/16 | 23/48 | playⓘ 1 step in 16 equal temperament, 3 steps in 48 | 16, 48 | | | |
76.96 | C ↓♯+ | 23 : 22 | 23 : 2×11 | playⓘ Greater 23-limit semitone | | 23 | | S |
78.00 | | (3 : 2)1/9 | 31/9 : 21/9 | playⓘ Alpha scale step | 15.39 | | | |
79.31 | | 67 : 64 | 67 : 26 | playⓘ Sixty-seventh harmonic[5] | | 67 | | |
80.54 | C↑ - | 22 : 21 | 2×11 : 3×7 | playⓘ Hard semitone,[5] two-fifth tone small semitone | | 11 | | S |
84.47 | D ♭ | 21 : 20 | 3×7 : 22×5 | playⓘ Septimal chromatic semitone, minor semitone[3] | | 7 | | S |
88.80 | C ♯ | 20 : 19 | 22×5 : 19 | playⓘ Novendecimal augmented unison | | 19 | | S |
90.22 | D♭−−[2] | 256 : 243 | 28 : 35 | playⓘ Pythagorean minor second or limma,[3][6][11] Pythagorean diatonic semitone, Low Semitone[14] | | 3 | | |
92.18 | C♯+[2] | 135 : 128 | 33×5 : 27 | playⓘ Greater chromatic semitone, chromatic semitone, semitone medius, major chroma or major limma,[3] small limma,[11] major chromatic semitone,[13] limma ascendant[5] | | 5 | | |
93.60 | D ♭- | 19 : 18 | 19 : 2×32 | Novendecimal minor secondplayⓘ | | 19 | | S |
97.36 | D↓↓ | 128 : 121 | 27 : 112 | playⓘ 121st subharmonic,[5][6] undecimal minor second | | 11 | | |
98.95 | D ♭ | 18 : 17 | 2×32 : 17 | playⓘ Just minor semitone, Arabic lute index finger[3] | | 17 | | S |
100.00 | C♯/D♭ | 21/12 | 21/12 | playⓘ Equal-tempered minor second or semitone | 12 | | M | |
104.96 | C ♯[2] | 17 : 16 | 17 : 24 | playⓘ Minor diatonic semitone, just major semitone, overtone semitone,[5] 17th harmonic,[3] limma[citation needed] | | 17 | | S |
111.45 | | 25√5 | (5 : 1)1/25 | playⓘ Studie II interval (compound just major third, 5:1, divided into 25 equal parts) | 10.77 | | | |
111.73 | D♭-[2] | 16 : 15 | 24 : 3×5 | playⓘ Just minor second,[15] just diatonic semitone, large just semitone or major second,[4] major semitone,[5] limma, minor diatonic semitone,[3] diatonic second[16] semitone,[14] diatonic semitone,[11] 1⁄6-comma meantone minor second | | 5 | | S |
113.69 | C♯++ | 2187 : 2048 | 37 : 211 | playⓘ Apotome[3][11] or Pythagorean major semitone,[6] Pythagorean augmented unison, Pythagorean chromatic semitone, or Pythagorean apotome | | 3 | | |
116.72 | | (18 : 5)1/19 | 21/19×32/19 : 51/19 | playⓘ Secor | 10.28 | | | |
119.44 | C ♯ | 15 : 14 | 3×5 : 2×7 | playⓘ Septimal diatonic semitone, major diatonic semitone,[3] Cowell semitone[5] | | 7 | | S |
125.00 | | 25/48 | 25/48 | playⓘ 5 steps in 48 equal temperament | 48 | | | |
128.30 | D  | 14 : 13 | 2×7 : 13 | playⓘ Lesser tridecimal 2/3-tone[17] | | 13 | | S |
130.23 | C ♯+ | 69 : 64 | 3×23 : 26 | playⓘ Sixty-ninth harmonic[5] | | 23 | | |
133.24 | D♭ | 27 : 25 | 33 : 52 | playⓘ Semitone maximus, minor second, large limma or Bohlen-Pierce small semitone,[3] high semitone,[14] alternate Renaissance half-step,[5] large limma, acute minor second[citation needed] | | 5 | | |
133.33 | C♯ /D♭ [a] | 21/9 | 22/18 | playⓘ Two-third tone | 9, 18, 36, 72 | | | |
138.57 | D ♭- | 13 : 12 | 13 : 22×3 | playⓘ Greater tridecimal 2/3-tone,[17] Three-quarter tone[5] | | 13 | | S |
150.00 | C /D | 23/24 | 21/8 | playⓘ Equal-tempered neutral second | 8, 24 | | | |
150.64 | D↓[2] | 12 : 11 | 22×3 : 11 | playⓘ 3⁄4 tone or Undecimal neutral second,[3][5] trumpet three-quarter tone,[11] middle finger [between frets][14] | | 11 | | S |
155.14 | D | 35 : 32 | 5×7 : 25 | playⓘ Thirty-fifth harmonic[5] | | 7 | | |
160.90 | D−− | 800 : 729 | 25×52 : 36 | playⓘ Grave whole tone,[3] neutral second, grave major second[citation needed] | | 5 | | |
165.00 | D↑♭−[2] | 11 : 10 | 11 : 2×5 | playⓘ Greater undecimal minor/major/neutral second, 4/5-tone[6] or Ptolemy's second[3] | | 11 | | S |
171.43 | | 21/7 | 21/7 | playⓘ 1 step in 7 equal temperament | 7 | | | |
175.00 | | 27/48 | 27/48 | playⓘ 7 steps in 48 equal temperament | 48 | | | |
179.70 | | 71 : 64 | 71 : 26 | playⓘ Seventy-first harmonic[5] | | 71 | | |
180.45 | E −−− | 65536 : 59049 | 216 : 310 | playⓘ Pythagorean diminished third,[3][6] Pythagorean minor tone | | 3 | | |
182.40 | D−[2] | 10 : 9 | 2×5 : 32 | playⓘ Small just whole tone or major second,[4] minor whole tone,[3][5] lesser whole tone,[16] minor tone,[14] minor second,[11] half-comma meantone major second | | 5 | | S |
200.00 | D | 22/12 | 21/6 | playⓘ Equal-tempered major second | 6, 12 | | M | |
203.91 | D[2] | 9 : 8 | 32 : 23 | playⓘ Pythagorean major second, Large just whole tone or major second[11] (sesquioctavan),[4] tonus, major whole tone,[3][5] greater whole tone,[16] major tone[14] | | 3 | | S |
215.89 | D | 145 : 128 | 5×29 : 27 | playⓘ Hundred-forty-fifth harmonic | | 29 | | |
223.46 | E −[2] | 256 : 225 | 28 : 32×52 | playⓘ Just diminished third,[16] 225th subharmonic | | 5 | | |
225.00 | | 23/16 | 29/48 | playⓘ 9 steps in 48 equal temperament | 16, 48 | | | |
227.79 | | 73 : 64 | 73 : 26 | playⓘ Seventy-third harmonic[5] | | 73 | | |
231.17 | D −[2] | 8 : 7 | 23 : 7 | playⓘ Septimal major second,[4] septimal whole tone[3][5] | | 7 | | S |
240.00 | | 21/5 | 21/5 | playⓘ 1 step in 5 equal temperament | 5 | | | |
247.74 | D ♯ | 15 : 13 | 3×5 : 13 | playⓘ Tridecimal 5⁄4 tone[3] | | 13 | | |
250.00 | D /E | 25/24 | 25/24 | playⓘ 5 steps in 24 equal temperament | 24 | | | |
251.34 | D ♯ | 37 : 32 | 37 : 25 | playⓘ Thirty-seventh harmonic[5] | | 37 | | |
253.08 | D♯− | 125 : 108 | 53 : 22×33 | playⓘ Semi-augmented whole tone,[3] semi-augmented second[citation needed] | | 5 | | |
262.37 | E↓♭ | 64 : 55 | 26 : 5×11 | playⓘ 55th subharmonic[5][6] | | 11 | | |
266.87 | E ♭[2] | 7 : 6 | 7 : 2×3 | playⓘ Septimal minor third[3][4][11] or Sub minor third[14] | | 7 | | S |
268.80 | D  | 299 : 256 | 13×23 : 28 | playⓘ Two-hundred-ninety-ninth harmonic | | 23 | | |
274.58 | D♯[2] | 75 : 64 | 3×52 : 26 | playⓘ Just augmented second,[16] Augmented tone,[14] augmented second[5][13] | | 5 | | |
275.00 | | 211/48 | 211/48 | playⓘ 11 steps in 48 equal temperament | 48 | | | |
289.21 | E ↓♭ | 13 : 11 | 13 : 11 | playⓘ Tridecimal minor third[3] | | 13 | | |
294.13 | E♭−[2] | 32 : 27 | 25 : 33 | playⓘ Pythagorean minor third[3][5][6][14][16] semiditone, or 27th subharmonic | | 3 | | |
297.51 | E ♭[2] | 19 : 16 | 19 : 24 | playⓘ 19th harmonic,[3] 19-limit minor third, overtone minor third[5] | | 19 | | |
300.00 | D♯/E♭ | 23/12 | 21/4 | playⓘ Equal-tempered minor third | 4, 12 | | M | |
301.85 | D ♯- | 25 : 21[5] | 52 : 3×7 | playⓘ Quasi-equal-tempered minor third, 2nd 7-limit minor third, Bohlen-Pierce second[3][6] | | 7 | | |
310.26 | | 6:5÷(81:80)1/4 | 22 : 53/4 | playⓘ Quarter-comma meantone minor third | | | M | |
311.98 | | (3 : 2)4/9 | 34/9 : 24/9 | playⓘ Alpha scale minor third | 15.39 | | | |
315.64 | E♭[2] | 6 : 5 | 2×3 : 5 | playⓘ Just minor third,[3][4][5][11][16] minor third,[14] 1⁄3-comma meantone minor third | | 5 | M | S |
317.60 | D♯++ | 19683 : 16384 | 39 : 214 | playⓘ Pythagorean augmented second[3][6] | | 3 | | |
320.14 | E ♭↑ | 77 : 64 | 7×11 : 26 | playⓘ Seventy-seventh harmonic[5] | | 11 | | |
325.00 | | 213/48 | 213/48 | playⓘ 13 steps in 48 equal temperament | 48 | | | |
336.13 | D ♯- | 17 : 14 | 17 : 2×7 | playⓘ Superminor third[18] | | 17 | | |
337.15 | E♭+ | 243 : 200 | 35 : 23×52 | playⓘ Acute minor third[3] | | 5 | | |
342.48 | E ♭ | 39 : 32 | 3×13 : 25 | playⓘ Thirty-ninth harmonic[5] | | 13 | | |
342.86 | | 22/7 | 22/7 | playⓘ 2 steps in 7 equal temperament | 7 | | | |
342.91 | E ♭- | 128 : 105 | 27 : 3×5×7 | playⓘ 105th subharmonic,[5] septimal neutral third[6] | | 7 | | |
347.41 | E↑♭−[2] | 11 : 9 | 11 : 32 | playⓘ Undecimal neutral third[3][5] | | 11 | | |
350.00 | D /E | 27/24 | 27/24 | playⓘ Equal-tempered neutral third | 24 | | | |
354.55 | E↓+ | 27 : 22 | 33 : 2×11 | playⓘ Zalzal's wosta[6] 12:11 X 9:8[14] | | 11 | | |
359.47 | E [2] | 16 : 13 | 24 : 13 | playⓘ Tridecimal neutral third[3] | | 13 | | |
364.54 | | 79 : 64 | 79 : 26 | playⓘ Seventy-ninth harmonic[5] | | 79 | | |
364.81 | E− | 100 : 81 | 22×52 : 34 | playⓘ Grave major third[3] | | 5 | | |
375.00 | | 25/16 | 215/48 | playⓘ 15 steps in 48 equal temperament | 16, 48 | | | |
384.36 | F♭−− | 8192 : 6561 | 213 : 38 | playⓘ Pythagorean diminished fourth,[3][6] Pythagorean 'schismatic' third[5] | | 3 | | |
386.31 | E[2] | 5 : 4 | 5 : 22 | playⓘ Just major third,[3][4][5][11][16] major third,[14] quarter-comma meantone major third | | 5 | M | S |
397.10 | E + | 161 : 128 | 7×23 : 27 | playⓘ One-hundred-sixty-first harmonic | | 23 | | |
400.00 | E | 24/12 | 21/3 | playⓘ Equal-tempered major third | 3, 12 | | M | |
402.47 | E  | 323 : 256 | 17×19 : 28 | playⓘ Three-hundred-twenty-third harmonic | | 19 | | |
407.82 | E+[2] | 81 : 64 | 34 : 26 | playⓘ Pythagorean major third,[3][5][6][14][16] ditone | | 3 | | |
417.51 | F ↓+[2] | 14 : 11 | 2×7 : 11 | playⓘ Undecimal diminished fourth or major third[3] | | 11 | | |
425.00 | | 217/48 | 217/48 | playⓘ 17 steps in 48 equal temperament | 48 | | | |
427.37 | F♭[2] | 32 : 25 | 25 : 52 | playⓘ Just diminished fourth,[16] diminished fourth,[5][13] 25th subharmonic | | 5 | | |
429.06 | E | 41 : 32 | 41 : 25 | playⓘ Forty-first harmonic[5] | | 41 | | |
435.08 | E [2] | 9 : 7 | 32 : 7 | playⓘ Septimal major third,[3][5] Bohlen-Pierce third,[3] Super major Third[14] | | 7 | | |
444.77 | F↓ | 128 : 99 | 27 : 32×11 | playⓘ 99th subharmonic[5][6] | | 11 | | |
450.00 | E /F | 29/24 | 29/24 | playⓘ 9 steps in 24 equal temperament | 8, 24 | | | |
450.05 | | 83 : 64 | 83 : 26 | playⓘ Eighty-third harmonic[5] | | 83 | | |
454.21 | F♭ | 13 : 10 | 13 : 2×5 | playⓘ Tridecimal major third or diminished fourth | | 13 | | |
456.99 | E♯[2] | 125 : 96 | 53 : 25×3 | playⓘ Just augmented third, augmented third[5] | | 5 | | |
462.35 | E - | 64 : 49 | 26 : 72 | playⓘ 49th subharmonic[5][6] | | 7 | | |
470.78 | F +[2] | 21 : 16 | 3×7 : 24 | playⓘ Twenty-first harmonic, narrow fourth,[3] septimal fourth,[5] wide augmented third,[citation needed] H7 on G | | 7 | | |
475.00 | | 219/48 | 219/48 | playⓘ 19 steps in 48 equal temperament | 48 | | | |
478.49 | E♯+ | 675 : 512 | 33×52 : 29 | playⓘ Six-hundred-seventy-fifth harmonic, wide augmented third[3] | | 5 | | |
480.00 | | 22/5 | 22/5 | playⓘ 2 steps in 5 equal temperament | 5 | | | |
491.27 | E ♯ | 85 : 64 | 5×17 : 26 | playⓘ Eighty-fifth harmonic[5] | | 17 | | |
498.04 | F[2] | 4 : 3 | 22 : 3 | playⓘ Perfect fourth,[3][5][16] Pythagorean perfect fourth, Just perfect fourth or diatessaron[4] | | 3 | | S |
500.00 | F | 25/12 | 25/12 | playⓘ Equal-tempered perfect fourth | 12 | | M | |
501.42 | F + | 171 : 128 | 32×19 : 27 | playⓘ One-hundred-seventy-first harmonic | | 19 | | |
510.51 | | (3 : 2)8/11 | 38/11 : 28/11 | playⓘ Beta scale perfect fourth | 18.80 | | | |
511.52 | F | 43 : 32 | 43 : 25 | playⓘ Forty-third harmonic[5] | | 43 | | |
514.29 | | 23/7 | 23/7 | playⓘ 3 steps in 7 equal temperament | 7 | | | |
519.55 | F+[2] | 27 : 20 | 33 : 22×5 | playⓘ 5-limit wolf fourth, acute fourth,[3] imperfect fourth[16] | | 5 | | |
521.51 | E♯+++ | 177147 : 131072 | 311 : 217 | playⓘ Pythagorean augmented third[3][6] (F+ (pitch)) | | 3 | | |
525.00 | | 27/16 | 221/48 | playⓘ 21 steps in 48 equal temperament | 16, 48 | | | |
531.53 | F + | 87 : 64 | 3×29 : 26 | playⓘ Eighty-seventh harmonic[5] | | 29 | | |
536.95 | F↓♯+ | 15 : 11 | 3×5 : 11 | playⓘ Undecimal augmented fourth[3] | | 11 | | |
550.00 | F /G | 211/24 | 211/24 | playⓘ 11 steps in 24 equal temperament | 24 | | | |
551.32 | F↑[2] | 11 : 8 | 11 : 23 | playⓘ eleventh harmonic,[5] undecimal tritone,[5] lesser undecimal tritone, undecimal semi-augmented fourth[3] | | 11 | | |
563.38 | F ♯+ | 18 : 13 | 2×9 : 13 | playⓘ Tridecimal augmented fourth[3] | | 13 | | |
568.72 | F♯[2] | 25 : 18 | 52 : 2×32 | playⓘ Just augmented fourth[3][5] | | 5 | | |
570.88 | | 89 : 64 | 89 : 26 | playⓘ Eighty-ninth harmonic[5] | | 89 | | |
575.00 | | 223/48 | 223/48 | playⓘ 23 steps in 48 equal temperament | 48 | | | |
582.51 | G ♭[2] | 7 : 5 | 7 : 5 | playⓘ Lesser septimal tritone, septimal tritone[3][4][5] Huygens' tritone or Bohlen-Pierce fourth,[3] septimal fifth,[11] septimal diminished fifth[19] | | 7 | | |
588.27 | G♭−− | 1024 : 729 | 210 : 36 | playⓘ Pythagorean diminished fifth,[3][6] low Pythagorean tritone[5] | | 3 | | |
590.22 | F♯+[2] | 45 : 32 | 32×5 : 25 | playⓘ Just augmented fourth, just tritone,[4][11] tritone,[6] diatonic tritone,[3] 'augmented' or 'false' fourth,[16] high 5-limit tritone,[5] 1⁄6-comma meantone augmented fourth | | 5 | | |
595.03 | G ♭ | 361 : 256 | 192 : 28 | playⓘ Three-hundred-sixty-first harmonic | | 19 | | |
600.00 | F♯/G♭ | 26/12 | 21/2=√2 | playⓘ Equal-tempered tritone | 2, 12 | | M | |
609.35 | G ♭ | 91 : 64 | 7×13 : 26 | playⓘ Ninety-first harmonic[5] | | 13 | | |
609.78 | G♭−[2] | 64 : 45 | 26 : 32×5 | playⓘ Just tritone,[4] 2nd tritone,[6] 'false' fifth,[16] diminished fifth,[13] low 5-limit tritone,[5] 45th subharmonic | | 5 | | |
611.73 | F♯++ | 729 : 512 | 36 : 29 | playⓘ Pythagorean tritone,[3][6] Pythagorean augmented fourth, high Pythagorean tritone[5] | | 3 | | |
617.49 | F♯ [2] | 10 : 7 | 2×5 : 7 | playⓘ Greater septimal tritone, septimal tritone,[4][5] Euler's tritone[3] | | 7 | | |
625.00 | | 225/48 | 225/48 | playⓘ 25 steps in 48 equal temperament | 48 | | | |
628.27 | F ♯+ | 23 : 16 | 23 : 24 | playⓘ Twenty-third harmonic,[5] classic diminished fifth[citation needed] | | 23 | | |
631.28 | G♭[2] | 36 : 25 | 22×32 : 52 | playⓘ Just diminished fifth[5] | | 5 | | |
646.99 | F ♯+ | 93 : 64 | 3×31 : 26 | playⓘ Ninety-third harmonic[5] | | 31 | | |
648.68 | G↓[2] | 16 : 11 | 24 : 11 | playⓘ ` undecimal semi-diminished fifth[3] | | 11 | | |
650.00 | F /G | 213/24 | 213/24 | playⓘ 13 steps in 24 equal temperament | 24 | | | |
665.51 | G | 47 : 32 | 47 : 25 | playⓘ Forty-seventh harmonic[5] | | 47 | | |
675.00 | | 29/16 | 227/48 | playⓘ 27 steps in 48 equal temperament | 16, 48 | | | |
678.49 | A −−− | 262144 : 177147 | 218 : 311 | playⓘ Pythagorean diminished sixth[3][6] | | 3 | | |
680.45 | G− | 40 : 27 | 23×5 : 33 | playⓘ 5-limit wolf fifth,[5] or diminished sixth, grave fifth,[3][6][11] imperfect fifth,[16] | | 5 | | |
683.83 | G | 95 : 64 | 5×19 : 26 | playⓘ Ninety-fifth harmonic[5] | | 19 | | |
684.82 | E   ++ | 12167 : 8192 | 233 : 213 | playⓘ 12167th harmonic | | 23 | | |
685.71 | | 24/7 : 1 | | playⓘ 4 steps in 7 equal temperament | 7 | | | |
691.20 | | 3:2÷(81:80)1/2 | 2×51/2 : 3 | playⓘ Half-comma meantone perfect fifth | | | M | |
694.79 | | 3:2÷(81:80)1/3 | 21/3×51/3 : 31/3 | playⓘ 1⁄3-comma meantone perfect fifth | | | M | |
695.81 | | 3:2÷(81:80)2/7 | 21/7×52/7 : 31/7 | playⓘ 2⁄7-comma meantone perfect fifth | | | M | |
696.58 | | 3:2÷(81:80)1/4 | 51/4 | playⓘ Quarter-comma meantone perfect fifth | | | M | |
697.65 | | 3:2÷(81:80)1/5 | 31/5×51/5 : 21/5 | playⓘ 1⁄5-comma meantone perfect fifth | | | M | |
698.37 | | 3:2÷(81:80)1/6 | 31/3×51/6 : 21/3 | playⓘ 1⁄6-comma meantone perfect fifth | | | M | |
700.00 | G | 27/12 | 27/12 | playⓘ Equal-tempered perfect fifth | 12 | | M | |
701.89 | | 231/53 | 231/53 | playⓘ 53-TET perfect fifth | 53 | | | |
701.96 | G[2] | 3 : 2 | 3 : 2 | playⓘ Perfect fifth,[3][5][16] Pythagorean perfect fifth, Just perfect fifth or diapente,[4] fifth,[14] Just fifth[11] | | 3 | | S |
702.44 | | 224/41 | 224/41 | playⓘ 41-TET perfect fifth | 41 | | | |
703.45 | | 217/29 | 217/29 | playⓘ 29-TET perfect fifth | 29 | | | |
719.90 | | 97 : 64 | 97 : 26 | playⓘ Ninety-seventh harmonic[5] | | 97 | | |
720.00 | | 23/5 : 1 | | playⓘ 3 steps in 5 equal temperament | 5 | | | |
721.51 | A − | 1024 : 675 | 210 : 33×52 | playⓘ Narrow diminished sixth[3] | | 5 | | |
725.00 | | 229/48 | 229/48 | playⓘ 29 steps in 48 equal temperament | 48 | | | |
729.22 | G - | 32 : 21 | 24 : 3×7 | playⓘ 21st subharmonic,[5][6] septimal diminished sixth | | 7 | | |
733.23 | F  + | 391 : 256 | 17×23 : 28 | playⓘ Three-hundred-ninety-first harmonic | | 23 | | |
737.65 | A ♭+ | 49 : 32 | 7×7 : 25 | playⓘ Forty-ninth harmonic[5] | | 7 | | |
743.01 | A | 192 : 125 | 26×3 : 53 | playⓘ Classic diminished sixth[3] | | 5 | | |
750.00 | G /A | 215/24 | 215/24 | playⓘ 15 steps in 24 equal temperament | 8, 24 | | | |
755.23 | G↑ | 99 : 64 | 32×11 : 26 | playⓘ Ninety-ninth harmonic[5] | | 11 | | |
764.92 | A ♭[2] | 14 : 9 | 2×7 : 32 | playⓘ Septimal minor sixth[3][5] | | 7 | | |
772.63 | G♯ | 25 : 16 | 52 : 24 | playⓘ Just augmented fifth[5][16] | | 5 | | |
775.00 | | 231/48 | 231/48 | playⓘ 31 steps in 48 equal temperament | 48 | | | |
781.79 | | π : 2 | | playⓘ Wallis product | | | | |
782.49 | G ↑-[2] | 11 : 7 | 11 : 7 | playⓘ Undecimal minor sixth,[5] undecimal augmented fifth,[3] Lucas numbers | | 11 | | |
789.85 | | 101 : 64 | 101 : 26 | playⓘ Hundred-first harmonic[5] | | 101 | | |
792.18 | A♭−[2] | 128 : 81 | 27 : 34 | playⓘ Pythagorean minor sixth,[3][5][6] 81st subharmonic | | 3 | | |
798.40 | A ♭+ | 203 : 128 | 7×29 : 27 | playⓘ Two-hundred-third harmonic | | 29 | | |
800.00 | G♯/A♭ | 28/12 | 22/3 | playⓘ Equal-tempered minor sixth | 3, 12 | | M | |
806.91 | G ♯ | 51 : 32 | 3×17 : 25 | playⓘ Fifty-first harmonic[5] | | 17 | | |
813.69 | A♭[2] | 8 : 5 | 23 : 5 | playⓘ Just minor sixth[3][4][11][16] | | 5 | | |
815.64 | G♯++ | 6561 : 4096 | 38 : 212 | playⓘ Pythagorean augmented fifth,[3][6] Pythagorean 'schismatic' sixth[5] | | 3 | | |
823.80 | | 103 : 64 | 103 : 26 | playⓘ Hundred-third harmonic[5] | | 103 | | |
825.00 | | 211/16 | 233/48 | playⓘ 33 steps in 48 equal temperament | 16, 48 | | | |
832.18 | G ♯+ | 207 : 128 | 32×23 : 27 | playⓘ Two-hundred-seventh harmonic | | 23 | | |
833.09 | | (51/2+1)/2 | φ : 1 | playⓘ Golden ratio (833 cents scale) | | | | |
835.19 | A♭+ | 81 : 50 | 34 : 2×52 | playⓘ Acute minor sixth[3] | | 5 | | |
840.53 | A ♭[2] | 13 : 8 | 13 : 23 | playⓘ Tridecimal neutral sixth,[3] overtone sixth,[5] thirteenth harmonic | | 13 | | |
848.83 | A ♭↑ | 209 : 128 | 11×19 : 27 | playⓘ Two-hundred-ninth harmonic | | 19 | | |
850.00 | G /A | 217/24 | 217/24 | playⓘ Equal-tempered neutral sixth | 24 | | | |
852.59 | A↓+[2] | 18 : 11 | 2×32 : 11 | playⓘ Undecimal neutral sixth,[3][5] Zalzal's neutral sixth | | 11 | | |
857.09 | A + | 105 : 64 | 3×5×7 : 26 | playⓘ Hundred-fifth harmonic[5] | | 7 | | |
857.14 | | 25/7 | 25/7 | playⓘ 5 steps in 7 equal temperament | 7 | | | |
862.85 | A− | 400 : 243 | 24×52 : 35 | playⓘ Grave major sixth[3] | | 5 | | |
873.50 | A | 53 : 32 | 53 : 25 | playⓘ Fifty-third harmonic[5] | | 53 | | |
875.00 | | 235/48 | 235/48 | playⓘ 35 steps in 48 equal temperament | 48 | | | |
879.86 | A↓ | 128 : 77 | 27 : 7×11 | playⓘ 77th subharmonic[5][6] | | 11 | | |
882.40 | B −−− | 32768 : 19683 | 215 : 39 | playⓘ Pythagorean diminished seventh[3][6] | | 3 | | |
884.36 | A[2] | 5 : 3 | 5 : 3 | playⓘ Just major sixth,[3][4][5][11][16] Bohlen-Pierce sixth,[3] 1⁄3-comma meantone major sixth | | 5 | M | |
889.76 | | 107 : 64 | 107 : 26 | playⓘ Hundred-seventh harmonic[5] | | 107 | | |
892.54 | B    | 6859 : 4096 | 193 : 212 | playⓘ 6859th harmonic | | 19 | | |
900.00 | A | 29/12 | 23/4 | playⓘ Equal-tempered major sixth | 4, 12 | | M | |
902.49 | A | 32 : 19 | 25 : 19 | playⓘ 19th subharmonic[5][6] | | 19 | | |
905.87 | A+[2] | 27 : 16 | 33 : 24 | playⓘ Pythagorean major sixth[3][5][11][16] | | 3 | | |
921.82 | | 109 : 64 | 109 : 26 | playⓘ Hundred-ninth harmonic[5] | | 109 | | |
925.00 | | 237/48 | 237/48 | playⓘ 37 steps in 48 equal temperament | 48 | | | |
925.42 | B −[2] | 128 : 75 | 27 : 3×52 | playⓘ Just diminished seventh,[16] diminished seventh,[5][13] 75th subharmonic | | 5 | | |
925.79 | A + | 437 : 256 | 19×23 : 28 | playⓘ Four-hundred-thirty-seventh harmonic | | 23 | | |
933.13 | A [2] | 12 : 7 | 22×3 : 7 | playⓘ Septimal major sixth[3][4][5] | | 7 | | |
937.63 | A↑ | 55 : 32 | 5×11 : 25 | playⓘ Fifty-fifth harmonic[5][20] | | 11 | | |
950.00 | A /B | 219/24 | 219/24 | playⓘ 19 steps in 24 equal temperament | 24 | | | |
953.30 | A ♯+ | 111 : 64 | 3×37 : 26 | playⓘ Hundred-eleventh harmonic[5] | | 37 | | |
955.03 | A♯[2] | 125 : 72 | 53 : 23×32 | playⓘ Just augmented sixth[5] | | 5 | | |
957.21 | | (3 : 2)15/11 | 315/11 : 215/11 | playⓘ 15 steps in Beta scale | 18.80 | | | |
960.00 | | 24/5 | 24/5 | playⓘ 4 steps in 5 equal temperament | 5 | | | |
968.83 | B ♭[2] | 7 : 4 | 7 : 22 | playⓘ Septimal minor seventh,[4][5][11] harmonic seventh,[3][11] augmented sixth[citation needed] | | 7 | | |
975.00 | | 213/16 | 239/48 | playⓘ 39 steps in 48 equal temperament | 16, 48 | | | |
976.54 | A♯+[2] | 225 : 128 | 32×52 : 27 | playⓘ Just augmented sixth[16] | | 5 | | |
984.21 | | 113 : 64 | 113 : 26 | playⓘ Hundred-thirteenth harmonic[5] | | 113 | | |
996.09 | B♭−[2] | 16 : 9 | 24 : 32 | playⓘ Pythagorean minor seventh,[3] Small just minor seventh,[4] lesser minor seventh,[16] just minor seventh,[11] Pythagorean small minor seventh[5] | | 3 | | |
999.47 | B ♭ | 57 : 32 | 3×19 : 25 | playⓘ Fifty-seventh harmonic[5] | | 19 | | |
1000.00 | A♯/B♭ | 210/12 | 25/6 | playⓘ Equal-tempered minor seventh | 6, 12 | | M | |
1014.59 | A ♯+ | 115 : 64 | 5×23 : 26 | playⓘ Hundred-fifteenth harmonic[5] | | 23 | | |
1017.60 | B♭[2] | 9 : 5 | 32 : 5 | playⓘ Greater just minor seventh,[16] large just minor seventh,[4][5] Bohlen-Pierce seventh[3] | | 5 | | |
1019.55 | A♯+++ | 59049 : 32768 | 310 : 215 | playⓘ Pythagorean augmented sixth[3][6] | | 3 | | |
1025.00 | | 241/48 | 241/48 | playⓘ 41 steps in 48 equal temperament | 48 | | | |
1028.57 | | 26/7 | 26/7 | playⓘ 6 steps in 7 equal temperament | 7 | | | |
1029.58 | B ♭ | 29 : 16 | 29 : 24 | playⓘ Twenty-ninth harmonic,[5] minor seventh[citation needed] | | 29 | | |
1035.00 | B↓[2] | 20 : 11 | 22×5 : 11 | playⓘ Lesser undecimal neutral seventh, large minor seventh[3] | | 11 | | |
1039.10 | B♭+ | 729 : 400 | 36 : 24×52 | playⓘ Acute minor seventh[3] | | 5 | | |
1044.44 | B ♭ | 117 : 64 | 32×13 : 26 | playⓘ Hundred-seventeenth harmonic[5] | | 13 | | |
1044.86 | B ♭- | 64 : 35 | 26 : 5×7 | playⓘ 35th subharmonic,[5] septimal neutral seventh[6] | | 7 | | |
1049.36 | B↑♭−[2] | 11 : 6 | 11 : 2×3 | playⓘ 21⁄4-tone or Undecimal neutral seventh,[3] undecimal 'median' seventh[5] | | 11 | | |
1050.00 | A /B | 221/24 | 27/8 | playⓘ Equal-tempered neutral seventh | 8, 24 | | | |
1059.17 | | 59 : 32 | 59 : 25 | playⓘ Fifty-ninth harmonic[5] | | 59 | | |
1066.76 | B− | 50 : 27 | 2×52 : 33 | playⓘ Grave major seventh[3] | | 5 | | |
1071.70 | B ♭- | 13 : 7 | 13 : 7 | playⓘ Tridecimal neutral seventh[21] | | 13 | | |
1073.78 | B  | 119 : 64 | 7×17 : 26 | playⓘ Hundred-nineteenth harmonic[5] | | 17 | | |
1075.00 | | 243/48 | 243/48 | playⓘ 43 steps in 48 equal temperament | 48 | | | |
1086.31 | C′♭−− | 4096 : 2187 | 212 : 37 | playⓘ Pythagorean diminished octave[3][6] | | 3 | | |
1088.27 | B[2] | 15 : 8 | 3×5 : 23 | playⓘ Just major seventh,[3][5][11][16] small just major seventh,[4] 1⁄6-comma meantone major seventh | | 5 | | |
1095.04 | C ♭ | 32 : 17 | 25 : 17 | playⓘ 17th subharmonic[5][6] | | 17 | | |
1100.00 | B | 211/12 | 211/12 | playⓘ Equal-tempered major seventh | 12 | | M | |
1102.64 | B↑↑♭- | 121 : 64 | 112 : 26 | playⓘ Hundred-twenty-first harmonic[5] | | 11 | | |
1107.82 | C′♭− | 256 : 135 | 28 : 33×5 | playⓘ Octave − major chroma,[3] 135th subharmonic, narrow diminished octave[citation needed] | | 5 | | |
1109.78 | B+[2] | 243 : 128 | 35 : 27 | playⓘ Pythagorean major seventh[3][5][6][11] | | 3 | | |
1116.88 | | 61 : 32 | 61 : 25 | playⓘ Sixty-first harmonic[5] | | 61 | | |
1125.00 | | 215/16 | 245/48 | playⓘ 45 steps in 48 equal temperament | 16, 48 | | | |
1129.33 | C′♭[2] | 48 : 25 | 24×3 : 52 | playⓘ Classic diminished octave,[3][6] large just major seventh[4] | | 5 | | |
1131.02 | B | 123 : 64 | 3×41 : 26 | playⓘ Hundred-twenty-third harmonic[5] | | 41 | | |
1137.04 | B | 27 : 14 | 33 : 2×7 | playⓘ Septimal major seventh[5] | | 7 | | |
1138.04 | C ♭ | 247 : 128 | 13×19 : 27 | playⓘ Two-hundred-forty-seventh harmonic | | 19 | | |
1145.04 | B | 31 : 16 | 31 : 24 | playⓘ Thirty-first harmonic,[5] augmented seventh[citation needed] | | 31 | | |
1146.73 | C↓ | 64 : 33 | 26 : 3×11 | playⓘ 33rd subharmonic[6] | | 11 | | |
1150.00 | B /C | 223/24 | 223/24 | playⓘ 23 steps in 24 equal temperament | 24 | | | |
1151.23 | C | 35 : 18 | 5×7 : 2×32 | playⓘ Septimal supermajor seventh, septimal quarter tone inverted | | 7 | | |
1158.94 | B♯[2] | 125 : 64 | 53 : 26 | playⓘ Just augmented seventh,[5] 125th harmonic | | 5 | | |
1172.74 | C + | 63 : 32 | 32×7 : 25 | playⓘ Sixty-third harmonic[5] | | 7 | | |
1175.00 | | 247/48 | 247/48 | playⓘ 47 steps in 48 equal temperament | 48 | | | |
1178.49 | C′− | 160 : 81 | 25×5 : 34 | playⓘ Octave − syntonic comma,[3] semi-diminished octave[citation needed] | | 5 | | |
1179.59 | B ↑ | 253 : 128 | 11×23 : 27 | playⓘ Two-hundred-fifty-third harmonic[5] | | 23 | | |
1186.42 | | 127 : 64 | 127 : 26 | playⓘ Hundred-twenty-seventh harmonic[5] | | 127 | | |
1200.00 | C′ | 2 : 1 | 2 : 1 | playⓘ Octave[3][11] or diapason[4] | 1, 12 | 3 | M | S |