Top Qs
Timeline
Chat
Perspective
Soil in Kilte Awula'ilo
From Wikipedia, the free encyclopedia
Remove ads
The soils of the Kilte Awula'ilo woreda (district) in Tigray, Ethiopia reflect its longstanding agricultural history, highly seasonal rainfall regime, relatively low temperatures, the presence of a wide depression at the foot of the Atsbi horst and steep slopes. Outstanding features in the soilscape are the wide ancient fluvial deposits, the soils of the granite batholith, cuestas and fertile lands behind tufa dams.[1][2][3]

Remove ads
Factors contributing to soil diversity
Summarize
Perspective
Climate
Annual rainfall depth is very variable with an average of around 600 mm.[4] Most rains fall during the main rainy season, which typically extends from June to September. Mean temperature in woreda town Wuqro is 22.2 °C, oscillating between average daily minimum of 12.6 °C and maximum of 31.1 °C. The contrasts between day and night air temperatures are much larger than seasonal contrasts.[5]

Geology
The following geological formations are present:[5]
- Agula Shale[6]
- Antalo Limestone
- Adigrat Sandstone
- Enticho Sandstone
- Edaga Arbi Glacials
- Precambrian metamorphic rocks
- Quaternary alluvium and freshwater tufa[7]
Topography
As part of the Ethiopian Highlands the land has undergone a rapid tectonic uplift, leading the occurrence of mountain peaks, plateaus, valleys and gorges.
Land use
Generally speaking, the level lands and intermediate slopes are occupied by cropland, while there is rangeland and shrubs on the steeper slopes. Remnant forests occur around Orthodox Christian churches and a few inaccessible places. A recent trend is the widespread planting of eucalyptus trees.
Environmental changes
Soil degradation in this district became important when humans started deforestation almost 5000 years ago.[8][9] Depending on land use history, locations have been exposed in varying degrees to such land degradation.
Remove ads
Geomorphic regions and soil units
Summarize
Perspective

Given the complex geology and topography of the district, it has been organised into land systems - areas with specific and unique geomorphic and geological characteristics, characterised by a particular soil distribution along the soil catena.[10][11][12] Soil types are classified in line with World Reference Base for Soil Resources and reference made to main characteristics that can be observed in the field.
Wuqro fluvial landscape
- Associated soil types
- Inclusions

Incised Giba plateau, upstream of (future) Lake Giba

- Associated soil types
- Inclusions
- Shallow, stony loam soils with moderate fertility (Eutric Regosol and Cambisol) (21)
- Deep, dark cracking clays with good fertility, but problems of waterlogging (Chromic and Pellic Vertisol) (12)
- Brown to dark, silty clay loams to loamy sands developed on alluvium, with good natural fertility (Fluvisol) (30)
Deeply incised mountainous area (escarpment towards Atsbi)

- Associated soil types
- Inclusions

Ancient river terraces


- Associated soil types
- shallow, stony, dark, loamy soils on calcaric material (Rendzic Leptosol) (3)
- Deep, dark cracking clays with good fertility, but problems of waterlogging (Chromic and Pellic Vertisol) (12)
- moderately deep, red-brownish, loamy soils with a good natural fertility (Chromic Luvisol) (20)
- Brown to dark, silty clay loams to loamy sands developed on alluvium, with good natural fertility (Fluvisol) (30)
- Inclusions
Alluvial plains induced by tufa dams

- Dominant soil type: deep dark cracking clays with very good natural fertility, waterlogged during the wet season (Chromic Vertisol, Pellic Vertisol) (12)
- Associated soil type: stony, dark cracking clays with good natural fertility (Vertic Cambisol) (10)
- Inclusions
Incised Agula Shale plateau

- Associated soil types
- Inclusions
- moderately deep dark stony clays with good natural fertility (Vertic Cambisol) (10)
- deep, dark cracking clays on calcaric material (Calcaric Vertisol, Calcic Vertisol) (11)
- deep dark cracking clays with very good natural fertility, waterlogged during the wet season (Chromic Vertisol, Pellic Vertisol) (12)
- shallow, stony loam soils (Eutric Regosol and Cambisol) (21)
Gently rolling Antalo Limestone plateau, holding cliffs and valley bottoms


- Associated soil types
- Inclusions
- Rock outcrops and very shallow soils (Lithic Leptosol) (1)
- Shallow very stony loamy soil on limestone (Skeletic Calcaric Cambisol) (5)
- Deep dark cracking clays with very good natural fertility, waterlogged during the wet season (Chromic Vertisol, Pellic Vertisol) (12)
- Brown to dark sands and silt loams on alluvium (Vertic Fluvisol, Eutric Fluvisol, Haplic Fluvisol) (30)
Cuesta landscape


- Dominant soil type: complex of rock outcrops, very stony and very shallow soils ((Lithic) Leptosol) (1)
- Associated soil type: shallow, very stony, silt loamy to loamy soils (Skeletic Cambisol, Leptic Cambisol, Skeletic Regosol) (4)
- Inclusions
Atsaf and Menda'i plains


- Associated soil types
- moderately deep, red-brownish, loamy soils with a good natural fertility (Chromic Luvisol) (20)
- shallow, stony loam soils with moderate fertility (Eutric Regosol and Cambisol) (21)
- sandy clay loams to sands developed on sandy colluvium (Eutric Arenosol, Regosol, Cambisol) (24)
- clays of floodplains with very high watertable with moderate to good natural fertility (Eutric Gleysol, Gleyic Cambisol) (33)
- Inclusions
Suluh plains with metavolcanic rocks

- Associated soil types
- Inclusions
Negash geosyncline


- Dominant soil type: shallow, stony loam soils (Eutric Regosol and Cambisol) (21)
- Associated soil types
- complex of rock outcrops, very stony and very shallow soils ((Lithic) Leptosol) (1)
- Inclusions
Circular granite batholith (intrusive)

Remove ads
Soil erosion and conservation
The reduced soil protection by vegetation cover, combined with steep slopes and erosive rainfall has led to excessive soil erosion.[8][13][14] Nutrients and organic matter were lost and soil depth was reduced. Hence, soil erosion is an important problem, which results in low crop yields and biomass production.[15] Given the strong degradation and thanks to the hard labour of many people in the villages, soil conservation is carried out on a large scale since the 1980s and especially 1980s; this has curbed rates of soil loss.[16] Measures include the construction of infiltration trenches, stone bunds,[17] check dams,[18] small reservoirs such as La'ilay Wuqro and May Azaboy as well as a major biological measure: exclosures in order to allow forest regeneration.[19] On the other hand, it remains difficult to convince farmers to carry out measures within the farmland (in situ soil management), such as bed and furrows or zero grazing, as there is a fear for loss of income from the land. Such techniques are however very effective.[20]
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads